Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Purpose: To analyze the relationship between engagement in sports in early life and bone variables among adults of both sexes. Methods: The sample was composed of 225 men and women. Demographic data were collected, and dual-energy X-ray absorptiometry was used to assess bone mineral density, bone mineral content, and lean soft tissue. Sports participation in early life was assessed by an interview including childhood and adolescence. Consumption of tobacco and alcohol was also assessed by interview and the habitual physical activity level by a pedometer. Results: Inactive men had bone mineral content around 11% lower than active men in childhood or adolescence, whereas for women, this difference represented around 14%. Active men had 74% less fat mass than inactive men in early life, and the difference was 67% for women. Early sports participation explained the differences in whole-body bone mineral content (16.8%, P-value = .005) and bone mineral density (8.8%, P-value = .015), as well as bone mineral density in lower limbs (18.9%, P-value = .001) among women. Conclusion: Adults engaged in sports in early life have higher bone mass than their inactive peers, especially women.

Mantovani, Gobbo, Codogno, and Fernandes are with the Post-graduation Program in Kinesiology, Institute of Bioscience, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil. Mantovani, de Lima, Turi-Lynch, Codogno, and Fernandes are with the Laboratory of Investigation in Exercise (LIVE), Dept of Physical Education, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil. Ronque and Romanzini are with the Londrina State University (UEL), Londrina, Paraná, Brazil.

Mantovani (leka_indy@hotmail.com) is corresponding author.
  • 1.

    Fortes CM, Goldberg TB, Kurokawa CS, et al. Relationship between chronological and bone ages and pubertal stage of breasts with bone biomarkers and bone mineral density in adolescents. J Pediatr. 2014;90(6):624631. PubMed doi:10.1016/j.jped.2014.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Matkovic V, Visy D. Nutrition and bone health during skeletal modeling and bone consolidation of childhood and adolescence. In: Holick M, Nieves J, eds. Nutrition and Bone Health. Nutrition and Health. New York, NY: Humana Press2015:199216.

    • Search Google Scholar
    • Export Citation
  • 3.

    Amadei SU, Silveira VÁS, Pereira AC, Carvalho YR, Rocha RFD. A influência da deficiência estrogênica no processo de remodelação e reparação óssea. J Bras Patol Med. 2006;42:512.

    • Search Google Scholar
    • Export Citation
  • 4.

    Elloumi M, Ben Ounis O, Courteix D, et al. Long-term rugby practice enhances bone mass and metabolism in relation with physical fitness and playing position. J Bone Miner Metab. 2009;27:713720. PubMed doi:10.1007/s00774-009-0086-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Batmaz I, Cakirca G, Sariyildiz MA, et al. Serum osteocalcin, bone alkaline phosphatase and cathepsin k levels of patients with postmenopausal RA: correlation with disease activity and joint damage. Acta Med Mediterr. 2014:30:397401.

    • Search Google Scholar
    • Export Citation
  • 6.

    American College of Sports Medicine. Physical activity and bone health. Med Sci Sports Exerc. 2004;36:19851996. doi:10.1249/01.MSS.0000142662.21767.58

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ducher G, Tournaire N, Meddhi-Pellé A, Benhamou CL, Courteix D. Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius. J Bone Miner Metab. 2006;24:484490. PubMed doi:10.1007/s00774-006-0710-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Verburgh L, Königs M, Scherder EJ, Oosterlaan J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br J Sports Med. 2014;48:973979. doi:10.1136/bjsports-2012-091441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act. 2013;10(1):1. doi:10.1186/1479-5868-10-1

    • Search Google Scholar
    • Export Citation
  • 10.

    Löfgren B, Dencker M, Nilsson JA, Karlsson KM. A 4-year exercise program in children increases bone mass without increasing fracture risk. Pediatrics. 2012:129:14681476. doi:10.1542/peds.2011-2274

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Basterfield L, Reilly JK, Pearce MS, et al. Longitudinal associations between sports participation, body composition and physical activity from childhood to adolescence. J Sci Med Sport. 2015;18(2):178182. doi:10.1016/j.jsams.2014.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ducher G, Courteix D, Même S, Magni C, Viala JF, Benhamou CL. Bone geometry in response to long-term tennis playing and its relationship with muscle volume: a quantitative magnetic resonance imaging study in tennis players. Bone. 2005;37:457466. PubMed doi:10.1016/j.bone.2005.05.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Manz K, Krug S, Schienkiewitz A, Finger JD. Determinants of organised sports participation patterns during the transition from childhood to adolescence in Germany: results of a nationwide cohort study. BMC Public Health. 2016;16(1):939. doi:10.1186/s12889-016-3615-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Howie EK, McVeigh JA, Smith AJ, Straker LM. Organized sport trajectories from childhood to adolescence and health associations. Med Sci Sports Exerc. 2016;48(7):13311339. PubMed doi:10.1249/MSS.0000000000000894

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Aspvik NP, Viken H, Zisko N, Ingebrigtsen JE, Wisløff U, Stensvold D. Are older adults physically active enough—a matter of assessment method? The generation 100 study. PLoS ONE. 2016;11(11):e0167012. PubMed doi:10.1371/journal.pone.0167012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Warden SJ, Roosa SMM, Kersh ME, et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A. 2014:111(14):53375342. PubMed doi:10.1073/pnas.1321605111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fernandes RA, Zanesco A. Early physical activity promotes lower prevalence of chronic diseases in adulthood. Hypertens Res. 2010;33(9):926931. PubMed doi:10.1038/hr.2010.106

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Fernandes RA, Christofaro DG, Casonatto J, et al. Prevalence of dyslipidemia in individuals physically active during childhood, adolescence and adult age. Arq Bras Cardiol. 2011;97:317323. PubMed doi:10.1590/S0066-782X2011005000083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fernandes RA, Coelho-E-Silva M, Spiguel Lima MC, Cayres S, Codogno JS, Lira F. Possible underestimation by sports medicine of the effects of early physical exercise practice on the prevention of diseases in adulthood. Curr Diabetes Rev. 2015;11:201205. PubMed doi:10.2174/1573399811666150401104515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index:<5000 steps/day. Appl Physiol Nutr Metab. 2012;38(2):100114. doi:10.1139/apnm-2012-0235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Siqueira FV, Facchini LA, Azevedo MR, et al. Physical activity practice in adolescence and prevalence of osteoporosis in adulthood. Rev Bras Med Esporte. 2009;15(1):2730. doi:10.1590/S1517-86922009000100006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Wennberg P, Gustafsson PE, Dunstan DW, Wennberg M, Hammarström A. Television viewing and low leisure-time physical activity in adolescence independently predict the metabolic syndrome in mid-adulthood. Diabetes Care. 2013;36(7):20902097. doi:10.2337/dc12-1948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Fernandes RA, Reichert FF, Monteiro HL, et al. Characteristics of family nucleus as correlates of regular participation in sports among adolescents. Int J Public Health. 2012;57(2):431435. PubMed doi:10.1007/s00038-010-0207-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wattie N, Tietjens M, Cobley S, Schorer J, Baker J, Kurz D. Relative age-related participation and dropout trends in German youth sports clubs. Eur J Sport Sci. 2014;14(suppl 1):S213S220. doi:10.1080/17461391.2012.681806

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Agostinete RR, Lynch KR, Gobbo LA, et al. Basketball affects bone mineral density accrual in boys more than swimming and other impact sports: 9-mo follow-up. J Clin Densitom. 2016;19(3):375381. doi:10.1016/j.jocd.2016.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Van Tuyckom C, Scheerder J, Bracke P. Gender and age inequalities in regular sports participation: a cross-national study of 25 European countries. J Sports Sci. 2010;28(10):10771084. PubMed doi:10.1080/02640414.2010.492229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Cauley JA. Estrogen and bone health in men and women. Steroids. 2015;99:1115. PubMed doi:10.1016/j.steroids.2014.12.010

  • 28.

    Bliuc D, Nguyen ND, Alarkawi D, Nguyen TV, Eisman JA, Center JR. Accelerated bone loss and increased post-fracture mortality in elderly women and men. Osteoporosis Int. 2015;26(4):13311339. doi:10.1007/s00198-014-3014-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kemper HC, Twisk JW, van Mechelen W, Post GB, Roos JC, Lips P. A fifteen-year longitudinal study in young adults on the relation of physical activity and fitness with the development of the bone mass: the Amsterdam Growth and Health Longitudinal Study. Bone. 2000;27(6):847853. doi:10.1016/S8756-3282(00)00397-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bakker I, Twisk JW, Van Mechelen W, Roos JC, Kemper HC. Ten-year longitudinal relationship between physical activity and lumbar bone mass in (young) adults. J Bone Miner Res. 2003;18(2):325332. PubMed doi:10.1359/jbmr.2003.18.2.325

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ribeiro-Dos-Santos MR, Lynch KR, Agostinete RR, et al. Prolonged practice of swimming is negatively related to bone mineral density gains in adolescents. J Bone Metab. 2016;23(3):149155. doi:10.11005/jbm.2016.23.3.149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ito IH, Kemper HCG, Agostinete RR, et al. Impact of martial arts (Judo, Karate, and Kung Fu) on bone mineral density gains in adolescents of both genders: 9-month follow-up. Pediatr Exerc Sci. 2017;29(4):496503. PubMed doi:10.1123/pes.2017-0019

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 149 141 31
Full Text Views 34 32 1
PDF Downloads 4 4 0