Accelerometer and GPS Analysis of Trail Use and Associations With Physical Activity

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Concurrent use of accelerometers and global positioning system (GPS) data can be used to quantify physical activity (PA) occurring on trails. This study examined associations of trail use with PA and sedentary behavior (SB) and quantified on trail PA using a combination of accelerometer and GPS data. Methods: Adults (N = 142) wore accelerometer and GPS units for 1–4 days. Trail use was defined as a minimum of 2 consecutive minutes occurring on a trail, based on GPS data. We examined associations between trail use and PA and SB. On trail minutes of light-intensity, moderate-intensity, and vigorous-intensity PA, and SB were quantified in 2 ways, using accelerometer counts only and with a combination of GPS speed and accelerometer data. Results: Trail use was positively associated with total PA, moderate-intensity PA, and light-intensity PA (P < .05). On trail vigorous-intensity PA minutes were 346% higher when classified with the combination versus accelerometer only. Light-intensity PA, moderate-intensity PA, and SB minutes were 15%, 91%, and 85% lower with the combination, respectively. Conclusions: Adult trail users accumulated more PA on trail use days than on nontrail use days, indicating the importance of these facilities for supporting regular PA. The combination of GPS and accelerometer data for quantifying on trail activity may be more accurate than accelerometer data alone and is useful for classifying intensity of activities such as bicycling.

Tamura is with the Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD. Wilson is with the Dept of Geography, Indiana University–Purdue University Indianapolis, Indianapolis, IN. Puett is with the Maryland Institute of Applied Environmental Health, School of Public Heath, University of Maryland, College Park, MD. Klenosky and Harper are with the Dept of Health & Kinesiology, Purdue University, West Lafayette, IN. Troped is with the Dept of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA.

Tamura (Kosuke.Tamura@nih.gov) is corresponding author.
  • 1.

    Physical Activity Guidelines Advisory Committee. 2008 Physical Activity Guidelines Advisory Committee Report. Washington, DC: US Department of Health and Human Services; 2008.

    • Search Google Scholar
    • Export Citation
  • 2.

    Buman MP, Winkler EA, Kurka JM, et al. Reallocating time to sleep, sedentary behaviors, or active behaviors: associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. Am J Epidemiol. 2014;179(3):323–334. PubMed doi:10.1093/aje/kwt292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Healy GN, Dunstan DW, Salmon J, et al. Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care. 2007;30(6):1384–1389. doi:10.2337/dc07-0114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Camhi SM, Sisson SB, Johnson WD, Katzmarzyk PT, Tudor-Locke C. Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health. Prev Med. 2011;52(5):358–360. doi:10.1016/j.ypmed.2011.01.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Beddhu S, Wei G, Marcus RL, Chonchol M, Greene T. Light-intensity physical activities and mortality in the United States general population and CKD subpopulation. Clin J Am Soc Nephrol. 2015;10(7):1145–1153. PubMed doi:10.2215/CJN.08410814

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297–322. doi:10.1146/annurev.publhealth.27.021405.102100

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gebel K, Ding D, Foster C, Bauman AE, Sallis JF. Improving current practice in reviews of the built environment and physical activity. Sports Med. 2015;45(3):297–302. PubMed doi:10.1007/s40279-014-0273-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Berke EM, Koepsell TD, Moudon AV, Hoskins RE, Larson EB. Association of the built environment with physical activity and obesity in older persons. Am J Public Health. 2007;97(3):486–492. PubMed doi:10.2105/AJPH.2006.085837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    King WC, Belle SH, Brach JS, Simkin-Silverman LR, Soska T, Kriska AM. Objective measures of neighborhood environment and physical activity in older women. Am J Prev Med. 2005;28(5):461–469. PubMed doi:10.1016/j.amepre.2005.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Li F, Harmer PA, Cardinal BJ, et al. Built environment, adiposity, and physical activity in adults aged 50–75. Am J Prev Med. 2008;35(1):38–46. PubMed doi:10.1016/j.amepre.2008.03.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Task Force on Community Preventive Services. Recommendations to increase physical activity in communities. Am J Prev Med. 2002;22(suppl 4):67–72.

  • 12.

    Price AE, Reed JA, Muthukrishnan S. Trail user demographics, physical activity behaviors, and perceptions of a newly constructed greenway trail. J Community Health. 2012;37(5):949–956. PubMed doi:10.1007/s10900-011-9530-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Brownson RC, Housemann RA, Brown DR, et al. Promoting physical activity in rural communities: walking trail access, use, and effects. Am J Prev Med. 2000;18(3):235–241. PubMed doi:10.1016/S0749-3797(99)00165-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gordon PM, Zizzi SJ, Pauline J. Use of a community trail among new and habitual exercisers: a preliminary assessment. Prev Chronic Dis. 2004;1(4):11. PubMed

    • Search Google Scholar
    • Export Citation
  • 15.

    Kaczynski AT, Potwarka LR, Saelens BE. Association of park size, distance, and features with physical activity in neighborhood parks. Am J Public Health. 2008;98(8):1451–1456. PubMed doi:10.2105/AJPH.2007.129064

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Librett JJ, Yore MM, Schmid TL. Characteristics of physical activity levels among trail users in a U.S. national sample. Am J Prev Med. 2006;31(5):399–405. PubMed doi:10.1016/j.amepre.2006.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Starnes HA, Troped PJ, Klenosky DB, Doehring AM. Trails and physical activity: a review. J Phys Act Health. 2011;8(8):1160–1174. PubMed doi:10.1123/jpah.8.8.1160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Reed JA, Hooker SP, Muthukrishnan S, Hutto B. User demographics and physical activity behaviors on a newly constructed urban rail/trail conversion. J Phys Act Health. 2011;8(4):534–542. PubMed doi:10.1123/jpah.8.4.534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Adlakha D, Hipp AJ, Marx C, et al. Home and workplace built environment supports for physical activity. Am J Prev Med. 2015;48(1):104–107. PubMed doi:10.1016/j.amepre.2014.08.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lindsey G, Yuling H, Wilson J, Jihui Y. Neighborhood correlates of urban trail use. J Phys Act Health. 2006;3(3):S139. doi:10.1123/jpah.3.s1.s139

  • 21.

    Lindsey GH, Wilson JS, Yang JH, Alexa CP. Urban greenways, trail characteristics, and trail use: Implications for urban design. J Urban Design. 2008;13(1):53–79. doi:10.1080/13574800701804033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Reed JA, Ainsworth BE, Wilson DK, Mixon G, Cook A. Awareness and use of community walking trails. Prev Med. 2004;39(5):903–908. PubMed doi:10.1016/j.ypmed.2004.03.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Evenson KR, Wen F, Hillier A, Cohen DA. Assessing the contribution of parks to physical activity using global positioning system and accelerometry. Med Sci Sports Exerc. 2013;45(10):1981–1987. PubMed doi:10.1249/MSS.0b013e318293330e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Rodriguez DA, Cho GH, Evenson KR, et al. Out and about: association of the built environment with physical activity behaviors of adolescent females. Health Place. 2012;18(1):55–62. PubMed doi:10.1016/j.healthplace.2011.08.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Oreskovic NM, Blossom J, Field AE, Chiang SR, Winickoff JP, Kleinman RE. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat Health. 2012;6(2):263–272. PubMed doi:10.4081/gh.2012.144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Rainham DG, Bates CJ, Blanchard CM, Dummer TJ, Kirk SF, Shearer CL. Spatial classification of youth physical activity patterns. Am J Prev Med. 2012;42(5):e87–96. PubMed doi:10.1016/j.amepre.2012.02.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Coombes E, van Sluijs E, Jones A. Is environmental setting associated with the intensity and duration of children’s physical activity? Findings from the SPEEDY GPS study. Health Place. 2013;20:62–65. PubMed doi:10.1016/j.healthplace.2012.11.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Troped PJ, Wilson JS, Matthews CE, Cromley EK, Melly SJ. The built environment and location-based physical activity. Am J Prev Med. 2010;38(4):429–438. PubMed doi:10.1016/j.amepre.2009.12.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Matthews CE, Chen KY, Freedson PS, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875–881. PubMed doi:10.1093/aje/kwm390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–1581. PubMed doi:10.1249/MSS.0b013e31821ece12

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Matthew CE. Calibration of accelerometer output for adults. Med Sci Sports Exerc. 2005;37(suppl 11):S512–S522. doi:10.1249/01.mss.0000185659.11982.3d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Crouter SE, DellaValle DM, Haas JD, Frongillo EA, Bassett DR. Validity of ActiGraph 2-regression model, Matthews cut-points, and NHANES cut-points for assessing free-living physical activity. J Phys Act Health. 2013;10(4):504–514. doi:10.1123/jpah.10.4.504

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lindsey G, Wilson J, Rubchinskaya E, Yang J, Han Y. Estimating urban trail traffic: methods for existing and proposed trails. Landsc Urban Plan. 2007;81(4):299–315. doi:10.1016/j.landurbplan.2007.01.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Huss A, Beekhuizen J, Kromhout H, Vermeulen R. Using GPS-derived speed patterns for recognition of transport modes in adults. Int J Health Geogr. 2014;13:40. PubMed doi:10.1186/1476-072X-13-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Troped PJ, Oliveira MS, Matthews CE, Cromley EK, Melly SJ, Craig BA. Prediction of activity mode with global positioning system and accelerometer data. Med Sci Sports Exerc. 2008;40(5):972–978. doi:10.1249/MSS.0b013e318164c407

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Oliver M, Badland H, Mavoa S, Duncan MJ, Duncan S. Combining GPS, GIS, and accelerometry: methodological issues in the assessment of location and intensity of travel behaviors. J Phys Act Health. 2010;7(1):102–108. PubMed doi:10.1123/jpah.7.1.102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Maslow AL, Reed JA, Price AE, Hooker SP. Associations between sociodemographic characteristics and perceptions of the built environment with the frequency, type, and duration of physical activity among trail users. Prev Chronic Dis. 2012;9:E53. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Panter JR, Jones A. Attitudes and the environment as determinants of active travel in adults: what do and don’t we know? J Phys Act Health. 2010;7(4):551–561. PubMed doi:10.1123/jpah.7.4.551

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Trost SG, Owen N, Bauman AE, Sallis JF, Brown W. Correlates of adults’ participation in physical activity: review and update. Med Sci Sports Exerc. 2002;34(12):1996–2001. PubMed doi:10.1097/00005768-200212000-00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ellis K, Godbole S, Marshall S, Lanckriet G, Staudenmayer J, Kerr J. Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms. Front Public Health. 2014;2:36. PubMed doi:10.3389/fpubh.2014.00036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 72 72 14
Full Text Views 6 6 0
PDF Downloads 0 0 0