Low- and High-Volume Water-Based Resistance Training Induces Similar Strength and Functional Capacity Improvements in Older Women: A Randomized Study

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Water-based resistance training (WRT) has been indicated to promote strength gains in elderly population. However, no study has compared different training strategies to identify the most efficient one. The aim of this study was to compare the effects of 3 WRT strategies on the strength and functional capacity of older women. Methods: In total, 36 women were randomly allocated to training groups: simple set of 30 seconds [1 × 30s; 66.41 (1.36) y; n = 12], multiple sets of 10 seconds [3 × 10s; 66.50 (1.43) y; n = 11], and simple set of 10 seconds [1 × 10s; 65.23 (1.09) y; n = 13]. Training lasted for 12 weeks. The maximal dynamic strength (in kilograms) and muscular endurance (number of repetitions) of knee extension, knee flexion, elbow flexion, and bench press, as well as functional capacity (number of repetitions), were evaluated. Results: All types of training promoted similar gains in maximal dynamic strength of knee extension and flexion as well as elbow flexion. Only the 1 × 30s and 1 × 10s groups presented increments in bench press maximal strength. All 3 groups showed increases in muscular endurance in all exercises and functional capacity. Conclusions: WRT using long- or short-duration simple sets promotes the same gains in strength and functional capacity in older women as does WRT using multiple sets.

Delevatti, Prado, Bagatini, Simmer, Meinerz, Barroso, Costa, Kanitz, and Kruel are with the Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Delevatti is also with the Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil. Prado is also with the Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil. Reichert is with the School of Physical Education, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Kanitz is also with the Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.

Reichert (thais_reichert@hotmail.com) is corresponding author.
  • 1.

    Charlier R, Knaeps S, Mertens E, et al. Age-related decline in muscle mass and muscle function in Flemish Caucasians: a 10-year follow-up. Age. 2016;38(2):36. PubMed doi:10.1007/s11357-016-9900-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol. 1991;71(2):644–650. PubMed doi:10.1152/jappl.1991.71.2.644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol. 2000;88(4):1321–1326. PubMed doi:10.1152/jappl.2000.88.4.1321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61:1059–1064. PubMed doi:10.1093/gerona/61.10.1059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89(1):81–88. PubMed doi:10.1152/jappl.2000.89.1.81

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Doherty TJ. Invited review: aging and sarcopenia. J Appl Physiol. 2003;95(4):1717–1727. PubMed doi:10.1152/japplphysiol.00347.2003

  • 7.

    Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2012;67(1):28–40. PubMed doi:10.1093/gerona/glr010

  • 8.

    Visser M, Goodpaster BH, Kritchevsky SB, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60(3):324–333. PubMed doi:10.1093/gerona/60.3.324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ruiz JR, Sui X, Lobelo F, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ. 2008;337:439.

  • 10.

    American College of Sports Medicine. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41:687–708. doi:10.1249/MSS.0b013e3181915670

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Alberton CL, Tartaruga MP, Pinto SS, et al. Vertical ground reaction force during water exercises performed at different intensities. Int J Sports Med. 2013;34(10):881–887. PubMed doi:10.1055/s-0032-1331757

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Alberton CL, Pinto SS, Cadore EL, et al. Oxygen uptake, muscle activity and ground reaction force during water aerobic exercises. Int J Sports Med. 2014;35(14):1161–1169. PubMed doi:10.1055/s-0034-1383597

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chu KS, Rhodes EC. Physical and cardiovascular changes associated with deep water running in the young. Sports Med. 2001;31(1):33–46. PubMed doi:10.2165/00007256-200131010-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Epstein M. Renal effects of head-out water immersion in humans: a 15-year update. Physiol Rev. 1992;72(3):563–621. PubMed doi:10.1152/physrev.1992.72.3.563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Pendergast DR, Moon RE, Krasney JJ, Held HE, Zamparo P. Human physiology in an aquatic environment. Compr Physiol. 2015;5:1705–1750. PubMed

  • 16.

    Bento PC, Pereira G, Ugrinowitsch C, Rodacki AL. The effects of a water-based exercise program on strength and functionality of older adults. J Aging Phys Act. 2012;20(4):469–483. doi:10.1123/japa.20.4.469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Bento PC, Rodacki AL. Muscle function in aged women in response to a water-based exercises program and progressive resistance training. Geriatr Gerontol Int. 2015;15(11):1193–1200. PubMed doi:10.1111/ggi.12418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kanitz AC, Delevatti RS, Reichert T, et al. Effects of two deep water training programs on cardiorespiratory and muscular strength responses in older adults. Exp Gerontol. 2015;64:55–61. PubMed doi:10.1016/j.exger.2015.02.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Prado AK, Reichert T, Conceição MO, Delevatti RS, Kanitz AC, Kruel LF. Effects of aquatic exercise on muscle strength in young and elderly adults: a systematic review and meta-analysis of randomized trials [published online ahead of print August 26, 2016]. J Strength Cond Res. 2016. doi:10.1519/JSC.0000000000001595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Takeshima N, Rogers ME, Watanabe E, et al. Water based exercise improves health-related aspects of fitness in older women. Med Sci Sports Exerc. 2002;34(3):544–551. PubMed doi:10.1097/00005768-200203000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Tsourlou T, Benik A, Dipla K, Zafeiridis A, Kellis S. The effects of a twenty-four-week aquatic training program on muscular strength performance in healthy elderly women. J Strength Cond Res. 2006;20(1):811–818.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Alexander R. Mechanic and energetics of animal locomotion. In: Alexander R, Goldspink G, eds. Swimming. London, UK: Chapman & Hall; 1977:222–248.

    • Search Google Scholar
    • Export Citation
  • 23.

    Buttelli AC, Pinto SS, Schoenell MC, et al. Effects of single vs multiple sets water-based resistance training on maximal dynamic strength in young men. J Hum Kinet. 2015;14(47):169–177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Schoenell MC, Alberton CL, Tiggemann CL, et al. Effects of single vs multiple sets during 10 weeks of water-based resistance training on neuromuscular adaptations in young women. Int J Sports Med. 2016;37(10):813–818. PubMed doi:10.1055/s-0042-106299

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Petroski EL. Desenvolvimento e validação de equações generalizadas para a estimativa da densidade corporal em adultos. [Tese de Doutorado]. Santa Maria, CA: Universidade Federal do Rio Grande do Sul; 1995.

    • Search Google Scholar
    • Export Citation
  • 26.

    Siri WE. Body composition from fluid spaces and density: analysis of methods. Nutrition. 1993;9(5):480–491. PubMed

  • 27.

    Lombardi VP. Beginning Weight Training: The Safe and Effective Way. Dubuque, IA: W.C. Brown; 1989.

  • 28.

    Rikli RE, Jones DJ. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act. 1999;7:129–161. doi:10.1123/japa.7.2.129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Barroso BM. Efeitos de um treinamento de força no meio aquático sobre parâmetros cinemáticos do exercício de extensão e flexão de joelho em mulheres idosas. Congresso Brasileiro de Metabolismo, Nutrição e Exercício, 6, 2016. Londrina. Anais, 192, 2016. Unpublished data.

    • Export Citation
  • 30.

    Fröhlich M, Emrich E, Schmidtbleicher D. Outcome effects of single-set versus multiple-set training—an advanced replication study. Res Sports Med. 2010;18(3):157–175. doi:10.1080/15438620903321045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hughes VA, Frontera WR, Wood M, et al. Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci. 2001;56(5):B209–217. doi:10.1093/gerona/56.5.B209

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Delmonico MJ, Harris TB, Visser M, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–1585. PubMed doi:10.3945/ajcn.2009.28047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kojima N, Kim M, Saito K, et al. Lifestyle-related factors contributing to decline in knee extension strength among elderly women: a cross-sectional and longitudinal cohort study. PLoS ONE. 2015;10(7):e0132523. PubMed doi:10.1371/journal.pone.0132523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Rantanen T. Muscle strength, disability and mortality. Scand J Med Sci Sports. 2003;13(1):3–8. PubMed doi:10.1034/j.1600-0838.2003.00298.x

All Time Past Year Past 30 Days
Abstract Views 145 145 31
Full Text Views 14 14 2
PDF Downloads 8 8 2