The Effect of Physical Activity Bout Patterns on Metabolic Syndrome Risk Factors in Youth: National Health and Nutrition Examination Survey 2003–2006

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: Research suggests that accumulating moderate to vigorous physical activity (MVPA) in longer continuous bouts may have beneficial effects on metabolic syndrome risk factors. The objective of this study was to examine the independent associations of MVPA bout patterns on metabolic syndrome risk factors among a nationally representative sample of youth. Methods: Results are based on 3165 children and adolescents (6–18 y old) from the 2003–2006 National Health and Nutrition Examination Survey. Accelerometers measured MVPA accumulated in bouts of: <5, 5 to 10, and ≥10 minutes over 7 days. Participants were categorized into quartiles based on percentage of each bout duration. Sensitivity analysis was conducted using 3 versions of MVPA cut points for youth. A series of general linear models were used to compare metabolic syndrome risk factors between groups. Results: Youth participating in longer continuous bouts of MVPA had lower body mass index percentile (P < .02), waist circumference (WC) (P < .01), WC percentile (P < .02), and waist to height ratio (P < .01) than youth participating in shorter bouts of MVPA. When analyzed for interactions between MVPA and bout pattern quartile, only 1 cut point showed a significant interaction for WC and WC percentile. Conclusion: Longer continuous bouts of MVPA had beneficial effects on body anthropometrics and weight status, although these effects may be moderated by total MVPA.

White is with Exercise Physiology Laboratory, Ward Family Heart Center, Children’s Mercy Hospital, Kansas City, MO. Oh is with the Institute for Measurement, Methodology, Analysis and Policy (IMMAP), Educational Psychology, Texas Tech University, Lubbock, TX. Willis is with Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD; and Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD.

White (dawhite@cmh.edu) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Ogden CLCarroll MDLawman HGet al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016;315(21):22922299. PubMed ID: 27272581 doi:10.1001/jama.2016.6361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    National Heart Lung and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(suppl 5):213256.

    • Search Google Scholar
    • Export Citation
  • 3.

    Kuzik NCarson VAndersen LBet al. Physical activity and sedentary time associations with metabolic health across weight statuses in children and adolescents. Obesity. 2017;25(10):17621769. PubMed ID: 28782888 doi:10.1002/oby.21952

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Morrison JAFriedman LAGray-McGuire C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: the Princeton lipid research clinics follow-up study. Pediatrics. 2007;120(2):340345. PubMed ID: 17671060 doi:10.1542/peds.2006-1699

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Morrison JAFriedman LAWang PGlueck CJ. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr. 2008;152(2):201206. PubMed ID: 18206689 doi:10.1016/j.jpeds.2007.09.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lakka HMLaaksonen DELakka TAet al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288(21):27092716. PubMed ID: 12460094 doi:10.1001/jama.288.21.2709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Magge SNGoodman EArmstrong SC. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics. 2017:140(2):e20171603. PubMed ID: 28739653 doi:10.1542/peds.2017-1603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rauner AMess FWoll A. The relationship between physical activity, physical fitness and overweight in adolescents: a systematic review of studies published in or after 2000. BMC Pediatr. 2013;13(1):19. doi:10.1186/1471-2431-13-19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Väistö JEloranta AMViitasalo Aet al. Physical activity and sedentary behaviour in relation to cardiometabolic risk in children: cross-sectional findings from the Physical Activity and Nutrition in Children (PANIC) Study. Int J Behav Nutr Phys Act. 2014;11(1):55. doi:10.1186/1479-5868-11-55

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Neto ASde Campos WDos Santos GCJunior OM. Metabolic syndrome risk score and time expended in moderate to vigorous physical activity in adolescents. BMC Pediatr. 2014;14(1):42. doi:10.1186/1471-2431-14-42

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Willis EAPtomey LTSzabo-Reed ANet al. Length of moderate-to-vigorous physical activity bouts and cardio-metabolic risk factors in elementary school children. Prev Med. 2015;73:7680. PubMed ID: 25647532 doi:10.1016/j.ypmed.2015.01.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Stone MRRowlands AVMiddlebrooke ARJawis MNEston RG. The pattern of physical activity in relation to health outcomes in boys. Int J Pediatr Obes. 2009;4(4):306315. PubMed ID: 19922046 doi:10.3109/17477160902846179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mark AEJanssen I. Influence of bouts of physical activity on overweight in youth. Am J Prev Med. 2009;36(5):416421. PubMed ID: 19362696 doi:10.1016/j.amepre.2009.01.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Holman RMCarson VJanssen I. Does the fractionalization of daily physical activity (sporadic vs bouts) impact cardiometabolic risk factors in children and youth? PLoS ONE. 2011;6(10):e25733. PubMed ID: 21998688 doi:10.1371/journal.pone.0025733

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Andersen LBHarro MSardinha LBet al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). The Lancet. 2006;368(9532):299304. PubMed ID: 16860699 doi:10.1016/S0140-6736(06)69075-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Centers for Disease Control and Prevention National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Questionnaire (or examination protocol, or laboratory protocol). 2006. http://www.cdc.gov/nchs/nhanes.htm.

    • PubMed
    • Export Citation
  • 17.

    Freedson PPober DJanz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;37(11):S523. doi:10.1249/01.mss.0000185658.28284.ba

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Troiano RPBerrigan DDodd KWMasse LCTilert TMcDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Saint-Maurice PFKim YWelk GJGaesser GA. Kids are not little adults: what MET threshold captures sedentary behavior in children? Eur J Appl Physiol. 2016;116(1):2938. PubMed ID: 26271677 doi:10.1007/s00421-015-3238-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Evenson KRCatellier DJGill KOndrak KSMcMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):15571565. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kuczmarski RJOgden CLGrummer-Strawn LMet al. CDC growth charts: United States. Adv Data. 2000;(314):127.

  • 22.

    Sharma AKMetzger DLDaymont CHadjiyannakis SRodd CJ. LMS tables for waist-circumference and waist-height ratio z-scores in children aged 5–19 y in NHANES III: association with cardio-metabolic risks. Pediatr Res. 2015;78(6):723729. PubMed ID: 26331767 doi:10.1038/pr.2015.160

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Friedewald WTLevy RIFredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499502. PubMed ID: 4337382

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ostchega YPrineas RJPaulose-Ram RGrim CMWillard GCollins D. National Health and Nutrition Examination Survey 1999–2000: effect of observer training and protocol standardization on reducing blood pressure measurement error. J Clin Epidemiol. 2003;56(8):768774. PubMed ID: 12954469 doi:10.1016/S0895-4356(03)00085-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    National Cancer Institute. The Healthy Eating Index—Population ratio method. 2018. https://epi.grants.cancer.gov/hei/population-ratio-method.html. Accessed December 01 2018.

    • Export Citation
  • 26.

    U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th ed; 2015. http://health.gov/dietaryguidelines/2015/guidelines/

    • Search Google Scholar
    • Export Citation
  • 27.

    Cochran WG. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics. 1968;24(2):295313. PubMed ID: 5683871 doi:10.2307/2528036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    R: A Language and Environment for Statistical Computing [computer program]. version 3.4.4. Vienna, Austria: The R Foundation for Statistical Computing Platform; 2017.

    • Search Google Scholar
    • Export Citation
  • 29.

    Griffin BARidgeway GMcCaffrey DFet al. Twang: Toolkit for Weighting and Analysis of Nonequivalent Groups [computer program]. Santa Monica, CA: RAND Corporation. 2014.http://www.rand.org/statistics/twang

    • Search Google Scholar
    • Export Citation
  • 30.

    Trost SGKerr LMWard DSPate RR. Physical activity and determinants of physical activity in obese and non-obese children. Int J Obes Relat Metab Disord. 2001;25(6):822829. PubMed ID: 11439296 doi:10.1038/sj.ijo.0801621

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nelson MCGordon-Larsen P. Physical activity and sedentary behavior patterns are associated with selected adolescent health risk behaviors. Pediatrics. 2006;117(4):12811290. PubMed ID: 16585325 doi:10.1542/peds.2005-1692

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jakicic JMWing RButler BRobertson R. Prescribing exercise in multiple short bouts versus one continuous bout: effects on adherence, cardiorespiratory fitness, and weight loss in overweight women. Int J Obes Relat Metab Disord. 1995;19(12):893901. PubMed ID: 8963358

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Trost SG. State of the art reviews: measurement of physical activity in children and adolescents. Am J Lifestyle Med. 2007;1(4):299314. doi:10.1177/1559827607301686

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Trost SGLoprinzi PDMoore RPfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):13601368. PubMed ID: 21131873 doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Goran MIGower BANagy TRJohnson RK. Developmental changes in energy expenditure and physical activity in children: evidence for a decline in physical activity in girls before puberty. Pediatrics. 1998;101(5):887891. PubMed ID: 9565420 doi:10.1542/peds.101.5.887

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Caldwell AE. Human Physical Fitness and Activity: An Evolutionary and Life History Perspective. New York, NY: Springer; 2016.

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 63 63 10
Full Text Views 2 2 0
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar