Duration–Response of Light-Intensity Physical Activity and Glucose Dynamics in Older Adults

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Older adults spend 30% of their day in light-intensity physical activity (LPA). This study was designed to determine if increasing the proportion of time spent in LPA would affect glucose control. Methods: Older adults (N = 9) completed four 3-hour treatment conditions consisting of a seated control and 3 randomized conditions: (1) 20% time spent in continuous LPA, 80% seated; (2) 40% time spent in continuous LPA, 60% seated; and (3) 60% time spent in continuous LPA, 40% seated. Energy expenditure was measured continuously, and glucose was measured prior to mixed-meal ingestion and hourly thereafter. Glucose area under the curve was compared between conditions using Friedman test. Results: There was a significant difference in glucose area under the curve by time spent in LPA (P < .001); specifically, between the seated and 60% LPA (mean difference = 35.0 [24.6] mg/dL, P = .01), seated and 40% LPA (mean difference = 25.2 [11.8] mg/dL, P = .03), seated and 20% LPA (mean difference = 17.8 [22.5] mg/dL, P = .03), 20% LPA and 60% LPA (mean difference = 17.2 [22.5] mg/dL, P = .01), and 40% LPA and 60% LPA (mean difference = 9.8 [7.3] mg/dL, P = .01). Conclusion: These results provide experimental evidence to the importance LPA has on metabolic health. If older adults who already spend, on average, about 3 hours per day in LPA, further increase their LPA, they could see benefit to glucose control.

Welch is with the Northwestern University Feinberg School of Medicine, Chicago, IL. Strath, Brondino, Walker, and Swartz are with the University of Wisconsin-Milwaukee, Milwaukee, WI.

Welch (whitney.welch@northwestern.edu) is corresponding author.
  • 1.

    Kohl HW 3rd, Craig CL, Lambert EV, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305. PubMed ID: 22818941 doi:10.1016/S0140-6736(12)60898-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–229. PubMed ID: 22818936 doi:10.1016/S0140-6736(12)61031-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ainsworth BE, Haskell WL, Herrmann SD, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–1581. PubMed ID: 21681120 doi:10.1249/MSS.0b013e31821ece12

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40. PubMed ID: 20459784 doi:10.1186/1479-5868-7-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Colbert LH, Matthews CE, Schoeller DA, Havighurst TC, Kim K. Intensity of physical activity in the energy expenditure of older adults. J Aging Phys Act. 2014;22(4):571–577. PubMed ID: 24306390 doi:10.1123/JAPA.2012-0257

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Loprinzi PD, Lee H, Cardinal BJ. Evidence to support including lifestyle light-intensity recommendations in physical activity guidelines for older adults. Am J Health Promot. 2014;29(5):277–284. PubMed ID: 24575724 doi:10.4278/ajhp.130709-QUAN-354

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ekblom-Bak E, Ekblom B, Vikstrom M, de Faire U, Hellenius ML. The importance of non-exercise physical activity for cardiovascular health and longevity. Br J Sports Med. 2014;48(3):233–238. PubMed ID: 24167194 doi:10.1136/bjsports-2012-092038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Buman MP, Hekler EB, Haskell WL, et al. Objective light-intensity physical activity associations with rated health in older adults. Am J Epidemiol. 2010;172(10):1155–1165. PubMed ID: 20843864 doi:10.1093/aje/kwq249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bailey DP, Locke CD. Breaking up prolonged sitting with light-intensity walking improves postprandial glycemia, but breaking up sitting with standing does not. J Sci Med Sport. 2014;18(3):294–298. doi:10.1016/j.jsams.2014.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dunstan DW, Kingwell BA, Larsen R, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976–983. PubMed ID: 22374636 doi:10.2337/dc11-1931

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    American College of Sports Medicine. ACSM’s Resource Manual for Guidelines for Exercise Testing and Prescription. 6th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2014.

    • Search Google Scholar
    • Export Citation
  • 12.

    Matthews CE, Keadle SK, Troiano RP, et al. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. Am J Clin Nutr. 2016;104(5):1424–1432. PubMed ID: 27707702 doi:10.3945/ajcn.116.135129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mikines KJ, Sonne B, Farrell PA, Tronier B, Galbo H. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol. 1988;254(3, pt 1):248–259. PubMed ID: 3126668

    • Search Google Scholar
    • Export Citation
  • 14.

    McLaughlin JE, King GA, Howley ET, Bassett DR Jr, Ainsworth BE. Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med. 2001;22(4):280–284. PubMed ID: 11414671 doi:10.1055/s-2001-13816

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Welch WA, Strath SJ, Swartz AM. Congruent validity and reliability of two metabolic systems to measure resting metabolic rate. Int J Sports Med. 2015;36(5):414–418. PubMed ID: 25700097 doi:10.1055/s-0034-1398575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Maki KC, McKenney JM, Farmer MV, Reeves MS, Dicklin MR. Indices of insulin sensitivity and secretion from a standard liquid meal test in subjects with type 2 diabetes, impaired or normal fasting glucose. Nutr J. 2009;8:22. PubMed ID: 19476649 doi:10.1186/1475-2891-8-22

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Freckmann G, Baumstark A, Jendrike N, et al. System accuracy evaluation of 27 blood glucose monitoring systems according to DIN EN ISO 15197. Diabetes Technol Ther. 2010;12(3):221–231. PubMed ID: 20151773 doi:10.1089/dia.2009.0128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Astles JR, Sedor FA, Toffaletti JG. Evaluation of the YSI 2300 glucose analyzer: algorithm-corrected results are accurate and specific. Clin Biochem. 1996;29(1):27–31. PubMed ID: 8929820 doi:10.1016/0009-9120(95)02010-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wolever TM, Jenkins DJ. The use of the glycemic index in predicting the blood glucose response to mixed meals. Am J Clin Nutr. 1986;43(1):167–172. PubMed ID: 3942088 doi:10.1093/ajcn/43.1.167

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ainsworth BE, Bassett DR Jr, Strath SJ, et al. Comparison of three methods for measuring the time spent in physical activity. Med Sci Sports Exerc. 2000;32(suppl 9):S457–S464. PubMed ID: 10993415 doi:10.1097/00005768-200009001-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hagstromer M, Oja P, Sjostrom M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9(6):755–762. PubMed ID: 16925881 doi:10.1079/PHN2005898

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kirkpatrick SI, Subar AF, Douglass D, et al. Performance of the Automated Self-Administered 24-hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am J Clin Nutr. 2014;100(1):233–240. PubMed ID: 24787491 doi:10.3945/ajcn.114.083238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Lohman TG, Harris M, Teixeira PJ, Weiss L. Assessing body composition and changes in body composition. Another look at dual-energy X-ray absorptiometry. Ann N Y Acad Sci. 2000;904:45–54. PubMed ID: 10865709 doi:10.1111/j.1749-6632.2000.tb06420.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Kelley DE, Goodpaster BH. Effects of exercise on glucose homeostasis in Type 2 diabetes mellitus. Med Sci Sports Exerc. 2001;33(suppl 6):S495–S501. PubMed ID: 11427776 doi:10.1097/00005768-200106001-00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. PubMed ID: 11832527 doi:10.1056/NEJMoa012512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 83 83 12
Full Text Views 12 12 4
PDF Downloads 1 1 0