Associations of Accumulated Time in Bouts of Sedentary Behavior and Moderate-to-Vigorous Physical Activity With Cardiometabolic Health in 10- to 13-Year-Old Boys

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Little is known about the impact of sedentary and moderate-to-vigorous physical activity (MVPA) bouts on cardiometabolic health. The aim was to examine how the accumulation of bouts of sedentary time and MVPA associates to cardiometabolic health in children independently of total sedentary and MVPA time. Methods: In a cross-sectional study with 123 boys (10–13 y), sedentary and MVPA bouts were determined using 7-day accelerometry. Each bout was compared with cardiometabolic risk factors and with the risk score that was calculated using standardized values of body mass index, waist circumference, homeostasis model assessment for insulin resistance, triglycerides, and total cholesterol/high-density cholesterol ratio. Results: Time in 10- to 14-minute sedentary bouts was negatively associated with continuous cardiometabolic risk score in weekdays and weekend days and with triglycerides in a weekend (P < .05). Time accumulated in ≥30-minute sedentary bouts was associated with higher insulin and homeostasis model assessment for insulin resistance values in weekend (P < .05). Weekday total MVPA and time accumulated in ≥10-minute MVPA bouts were negatively associated with continuous cardiometabolic risk score and body mass index in weekdays (P < .05). No associations were found between total sedentary time and metabolic health. Conclusion: Significant associations between sedentary and MVPA bouts with cardiometabolic risk factors suggest the need of the more detailed analysis for sedentary behavior and its effects on health risks.

The authors are with the Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu, Tartu, Estonia.

Lätt (evelin.latt@ut.ee) is corresponding author.
  • 1.

    Cliff DP, Hesketh KD, Vella SA, et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes Rev. 2016;17:330–344. PubMed ID: 26914664 doi:10.1111/obr.12371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    van Ekris E, Altenburg TM, Singh AS, Proper KI, Heymans MW, Chinapaw MJ. An evidence-update on the prospective relationship between childhood sedentary behaviour and biomedical health indicators: a systematic review and meta-analysis. Obes Rev. 2016;17:833–849. PubMed ID: 27256486 doi:10.1111/obr.12426

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Altenburg TM, Rotteveel J, Dunstan DW, Salmon J, Chinapaw MJ. The effect of interrupted prolonged sitting time with short, hourly, moderate-intensity cycling bouts on cardiometabolic risk factors in healthy, young adults. J Appl Physiol. 2013;115:1751–1756. doi:10.1152/japplphysiol.00662.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dunstan DW, Kingwell BA, Larsen R, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35:976–983. PubMed ID: 22374636 doi:10.2337/dc11-1931

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Peddie MC, Bone JL, Rehrer NJ, Skeaff CM, Gray AR, Perry TL. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr. 2013;98:358–366. PubMed ID: 23803893 doi:10.3945/ajcn.112.051763

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307:704–712. PubMed ID: 22337681 doi:10.1001/jama.2012.156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Fedewa MV, Gist NH, Evans EM, Dishman RK. Exercise and insulin resistance in youth: a meta-analysis. Pediatrics. 2014;133:163–174. PubMed ID: 24298011 doi:10.1542/peds.2013-2718

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Altenburg TM, de Niet N, Verloigne M, et al. Occurrence and duration of various operational definition of sedentary bouts and cross-sectional associations with cardiometabolic health indicators: the ENERGY-project. Prev Med. 2015;71:101–106. PubMed ID: 25535676 doi:10.1016/j.ypmed.2014.12.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Saunders TJ, Tremblay MS, Mathieu ME, et al. Associations of sedentary behaviour, sedentary bouts and breaks in sedentary time with cardiometabolic risk in children with a family history of obesity. PLoS ONE. 2013;8:e79143. PubMed ID: 24278117 doi:10.1371/journal.pone.0079143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Verloigne M, Ridgers ND, Chinapaw M, et al. Patterns of objectively measured sedentary time in 10- to 12-year-old Belgian children: an observational study within the ENERGY-project. BMC Pediatr. 2017;17:147. PubMed ID: 28615079. doi:10.1186/s12887-017-0894-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Carson V, Janssen I. Volume, patterns, and types of sedentary behaviour and cardio-metabolic health in children and adolescents: a cross-sectional study. BMC Public Health. 2011;11:274. PubMed ID: 21542910 doi:10.1186/1471-2458-11-274

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41:S197–S239. PubMed ID: 27306431 doi:10.1139/apnm-2015-0663

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Tarp J, Bugge A, Andersen LB, et al. Does adiposity mediate the relationship between physical activity and biological risk factors in youth?: a cross-sectional study from the International Children’s Accelerometry Database (ICAD) [published online ahead of print October 3, 2017]. Int J Obes. doi:10.1038/ijo.2017.241

    • Search Google Scholar
    • Export Citation
  • 14.

    Brooke HL, Corder K, Atkin AJ, van Sluijs EM. A systematic literature review with meta-analyses of within- and between-day differences in objectively measured physical activity in school-aged children. Sports Med. 2014;44:1427–1438. PubMed ID: 24981243 doi:10.1007/s40279-014-0215-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Carson V, Stone M, Faulkner G. Patterns of sedentary behaviour and weight status among children. Pediatr Exerc Sci. 2014;26:95–102. PubMed ID: 24092774. doi:10.1123/pes.2013-0061.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lätt E, Mäestu J, Rääsk T, Jürimäe T, Jürimäe J. Cardiovascular fitness, physical activity, and metabolic syndrome risk factors among adolescent Estonian boys: a longitudinal study. Am J Hum Biol. 2016;28:782–788. doi:10.1002/ajhb.22866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Lätt E, Mäestu J, Rääsk T, et al. Association of physical activity to cardiovascular fitness and fatness in 12–13-year-old boys in different weight status. J Public Health. 2013;21:231–239. doi:10.1007/s10389-012-0549-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lätt E, Mäestu J, Ortega FB, Rääsk T, Jürimäe T, Jürimäe J. Vigorous physical activity rather than sedentary behaviour predicts overweight and obesity in pubertal boys: a 2-year follow-up study. Scand J Public Health. 2015;43:276–282. doi:10.1177/1403494815569867

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Chinapaw MJM, de Niet M, Verloigne M, De Bordeaudhuij I, Brug J, Altenburg TM. From sedentary time to sedentary patterns: accelerometer data reduction decisions in youth. PLoS ONE. 2014;9:e111205. PubMed ID: 25369021 doi:10.1371/journal.pone.0111205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ortega FB, Konstabel K, Pasquali E, et al. Objectively measured physical activity and sedentary time during childhood, adolescence and young adulthood: a cohort study. PLoS ONE. 2013;8:e60871. PubMed ID: 23637772 doi:10.1371/journal.pone.0060871

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–1565. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    McVeigh JA, Winkler EAH, Howie EK, et al. Objectively measured patterns of sedentary time and physical activity in young adults of the Raine study cohort. Int J Behav Nutr. 2016;13:41. doi:10.1186/s12966-016-0363-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Mark AE, Janssen I. Influence of bouts of physical activity on overweight in youth. Am J Prev Med. 2009;36:416–421. PubMed ID: 19362696 doi:10.1016/j.amepre.2009.01.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Thomas AS, Greene LF, Ard JD, Oster RA, Darnell BE, Gower BA. Physical activity may facilitate diabetes prevention in adolescents. Diabetes Care. 2009;32:9–13. PubMed ID: 18840771 doi:10.2337/dc08-0780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. Geneva, Switzerland; 2008.

  • 26.

    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–1240. PubMed ID: 10797032 doi:10.1136/bmj.320.7244.1240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Eisenmann JC. On the use of a continuous metabolic syndrome score in pediatric research. Cardiovasc Diabetol. 2008;7:17. PubMed ID: 18534019 doi:10.1186/1475-2840-7-17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45:13–23. PubMed ID: 5440182 doi:10.1136/adc.45.239.13

  • 29.

    Colley RC, Garriguet D, Janssen I, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian Health Measures Survey. BMC Public Health. 2013;13:200. PubMed ID: 23497190 doi:10.1186/1471-2458-13-200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sardinha LB, Andersen LB, Anderssen SA, et al. Objectively measured time spent sedentary is associated with insulin resistance independent of overall and central body fat in 9- to 10-year-old Portuguese children. Diabetes Care. 2008;31:569–575. PubMed ID: 18070991 doi:10.2337/dc07-1286

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Benatti FB, Ried-Larsen M. The effects of breaking up prolonged sitting time: a review of experimental studies. Med Sci Sports Exerc. 2015;47:2053–2061. PubMed ID: 26378942 doi:10.1249/MSS.0000000000000654

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Harding SK, Page AS, Falconer C, Cooper AR. Longitudinal changes in sedentary time and physical activity during adolescence. Int J Behav Nutr Phys Act. 2015;12:44. PubMed ID: 25888805 doi:10.1186/s12966-015-0204-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Dumith SC, Gigante DP, Domingues MR, Kohl HW. Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40:685–698. PubMed ID: 21245072 doi:10.1093/ije/dyq272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Ruiz JR, Ortega FB. Physical activity and cardiovascular disease risk factors in children and adolescents. Curr Cardio Risk Rep. 2009;3:281–287. doi:10.1007/s12170-009-0043-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Rizzo NS, Ruiz JR, Oja L, Veidebaum T, Sjöström M. Associations between physical activity, body fat, and insulin resistance (homeostasis model assessment) in adolescents: the European Youth Heart Study. Am J Clin Nutr. 2008;87:586–592. PubMed ID: 18326595 doi:10.1093/ajcn/87.3.586

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Brage S, Wedderkopp N, Ekelund U, et al. Features of the metabolic syndrome are associated with objectively measured physical activity and fitness in Danish children: the European Youth Heart Study (EYHS). Diabetes Care. 2004;27:2141–2148. PubMed ID: 15333475 doi:10.2337/diacare.27.9.2141

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: U.S. Department of Health and Human Services; 2018.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 51 51 5
Full Text Views 6 6 1
PDF Downloads 2 2 2