Head-Out Aquatic Exercise for Generally Healthy Postmenopausal Women: A Systematic Review

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: Aquatic exercise (AE) is a method for exercise and rehabilitation to enhance function for various clients. Objectives: Investigate the effects of head-out AE interventions on the physiological and psychological outcomes of healthy postmenopausal women of age 50–70 years. Search Strategies: Databases searched included Scopus, ScienceDirect, ResearchGate, PubMed/MEDLINE, PEDro, CINAHL, The Cochrane Library, Nursing & Allied Health Collection: Comprehensive, JSTOR, and OTSeeker.com, through January 2015. Search Criteria: Randomized controlled trial and quasi-randomized controlled trial studies. Data Collection and Analysis: Two researchers scanned studies based on inclusion and exclusion criteria. Studies included were critically appraised using the Physiotherapy Evidence Database scale (PEDro scale). Results: A total of 15 studies including postmenopausal women and head-out AE intervention were reviewed. Considerable variation existed in the interventions and assessments. Outcome measures showed anthropometric measures (body mass index, circumference, skinfolds, and body fat) were inconclusive; upper and lower body strength improved; flexibility improved; all functional movements (short-distance walk, long-distance walk/run, power, agility, balance and falls) improved; bone density improved; biochemical and hormonal variables were inconclusive; and quality of life outcomes improved. Conclusions: Head-out AE appears to be an effective training and conditioning method for postmenopausal women to improve strength, flexibility, functional movements, bone density, and quality of life.

Binkley is with the Department of Health and Human Performance, Middle Tennessee State University, Murfreesboro, TN. Rudd is with the Department of Human Sciences, Middle Tennessee State University, Murfreesboro, TN.

Binkley (Helen.Binkley@mtsu.edu) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    The American Congress of Obstetricians and Gynecologists (ACOG). 2011 Women’s Health STATS & FACTS. Acog.org. 2011:33. Available at https://www.acog.org/-/media/NewsRoom/MediaKit.pdf?dmc=1&ts=20171024T2313379491. Accessed October 24 2016.

    • Search Google Scholar
    • Export Citation
  • 2.

    Murphy PJCampbell SS. Sex hormones, sleep, and core body temperature in older postmenopausal women. Sleep. 2007;30(12):17881794. PubMed ID: 18246988 doi:10.1093/sleep/30.12.1788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Jehan SMasters-Isarilov ASalifu Iet al. Sleep disorders in postmenopausal women. J Sleep Disord Ther. 2015;4(5):1000212. PubMed ID: 26512337 doi:10.4172/2167-0277.1000212

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Maltais MLDesroches JDionne IJ. Changes in muscle mass and strength after menopause. J Musculoskelet Neuronal Interact. 2009;9(4):186197. PubMed ID: 19949277

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Walsh MCHunter GRLivingstone MB. Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int. 2006;17:6167. PubMed ID: 15995793 doi:10.1007/s00198-005-1900-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kulie TSlattengren ARedmer JCounts HEglash ASchrager S. Obesity and women’s health: an evidence-based review. J Am Board Fam Med. 2011;24(1):7585. PubMed ID: 21209347 doi:10.3122/jabfm.2011.01.100076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Svendsen OLHassager CChristiansen C. Age- and menopause-associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism. 1995;44:369373. PubMed ID: 7885283 doi:10.1016/0026-0495(95)90168-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Berg GMesch VBoero Let al. Lipid and lipoprotein profile in menopausal transition: effects of hormones, age and fat distribution. Horm Metab Res. 2004;36(4):215220. PubMed ID: 15114519 doi:10.1055/s-2004-814450

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gallagher EJLeRoith DKarnieli E. The metabolic syndrome—from insulin resistance to obesity and diabetes. Endocrinol Metab Clin North Am. 2008;37(3):559579. PubMed ID: 18775352 doi:10.1016/j.ecl.2008.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gurka MJVishnu ASanten RJDeBoer MD. Progression of metabolic syndrome severity during the menopausal transition. J Am Heart Assoc. 2016;5(8):003609. PubMed ID: 27487829 doi:10.1161/JAHA.116.003609

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Jouyandeh ZNayebzadeh FQorbani MAsadi M. Metabolic syndrome and menopause. J Diabetes Metab Disord. 2013;12(1):1. PubMed ID: 23497470 doi:10.1186/2251-6581-12-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tankó LBChristiansen CCox DAGeiger MJMcNabb MACummings SR. Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res. 2005;20(11):19121920. doi:10.1359/JBMR.050711

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jackson SLScholes DBoyko EJAbraham LFihn SD. Urinary incontinence and diabetes in postmenopausal women. Diabetes Care. 2005;28(7):17301738. PubMed ID: 15983327 doi:10.2337/diacare.28.7.1730

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Folsom ARKushi LHHong CP. Physical activity and incident diabetes mellitus in postmenopausal women. Am J Public Health. 2000;90(1):134138. PubMed ID: 10630154 doi:10.2105/AJPH.90.1.134

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kurella MYaffe KShlipak MGWenger NKChertow GM. Chronic kidney disease and cognitive impairment in menopausal women. Am J Kidney Dis. 2005;45(1):6676. PubMed ID: 15696445 doi:10.1053/j.ajkd.2004.08.044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Soares CNJoffe HSteiner M. Menopause and mood. Clin Obstet Gynec. 2004;47(3):576591. PubMed ID: 15326420 doi:10.1097/01.grf.0000129918.00756.d5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Smoller JWPollack MHWassertheil-Smoller Set al. Prevalence and correlates of panic attacks in postmenopausal women: Results From an Ancillary Study to the Women's Health Initiative. Arch Intern Med. 2003;163:20412050. PubMed ID: 14504117 doi:10.1001/archinte.163.17.2041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Cohen LSSoares CNVitonis AFOtto MWHarlow BL. Risk for new onset of depression during the menopausal transition: the Harvard study of moods and cycles. Arch Gen Psychiatry. 2006;63(4):385390. PubMed ID: 16585467 doi:10.1001/archpsyc.63.4.385

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ashook PApte GWagh GJoshi AR. Psychological well-being & obesity in peri-menopausal and post-menopausal women. Natl J Physiol Pharm Pharmacol. 2013;3(1):97101. doi:10.5455/njppp.2013.3.97-101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    National Prevention Council. Healthy Aging in Action. Washington, DC: U.S. Department of Health and Human Services, Office of the Surgeon General; 2016. https://www.surgeongeneral.gov/priorities/prevention/about/healthy-aging-in-action-final.pdf. Accessed October 24 2016.

    • Search Google Scholar
    • Export Citation
  • 21.

    American College of Sports Medicine (ACSM). Exercise is Medicine®. 2014. http://www.acsm.org/about-acsm/initiatives/eim. Accessed October 24 2016.

    • Export Citation
  • 22.

    Lobelo FStoutenberg MHutber A. The exercise is medicine global health initiative: a 2014 update. Br J Sports Med. 2014;48(22):16271633. PubMed ID: 24759911 doi:10.1136/bjsports-2013-093080

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Office of Disease Prevention and Health Promotion (ODPHP). 2008 Physical Activity Guidelines for Americans. ODPHP Publication No. U0036 October 2008. https://health.gov/paguidelines/guidelines/chapter5.aspx. Accessed October 24 2016.

    • Search Google Scholar
    • Export Citation
  • 24.

    Becker BE. Biophysiologic aspects of hydrotherapy. In: Becker BECole AJ eds. Comprehensive Aquatic Therapy. 3rd ed. Pullman, WA: Washington State University; 2011:2375.

    • Search Google Scholar
    • Export Citation
  • 25.

    Becker BE. Aquatic therapy: scientific foundations and clinical rehabilitation applications. PMR. 2009;1:859872. doi:10.1016/j.pmrj.2009.05.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Broach EDattilo J. Aquatic therapy: a viable therapeutic recreation intervention. Ther Recreation J. 1996;30(3):213229.

  • 27.

    Wilcock IMCronin JBHin WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747765. PubMed ID: 16937951 doi:10.2165/00007256-200636090-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Katsura YYoshikawa TUeda SYet al. Effects of aquatic exercise training using water-resistance equipment in elderly. Eur J Appl Physiol. 2010;108:957964. PubMed ID: 19960351 doi:10.1007/s00421-009-1306-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ⓢrámek PⓈimeⓒková MJanský LⓈavlíková JVybíral S. Human physiological responses to immersion into water of different temperatures. Eur J Appl Physiol. 2000;81:436442. PubMed ID: 10751106 doi:10.1007/s004210050065

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Binkley HKendrick ZVDoerr EAPerfetti GPina IL. Effects of water exercise on cardiovascular responses of hypertensive elderly inner-city women. J Aquatic Phys Ther. 2002;10(1):2833.

    • Search Google Scholar
    • Export Citation
  • 31.

    Dolbow DRFarley RSKim JKCaputo JL. Oxygen consumption, heart rate, rating of perceived exertion, and systolic blood pressure with water treadmill walking. J Aging Phys Act. 2008;16(1):1423. PubMed ID: 18212391 doi:10.1123/japa.16.1.14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Volaklis KASpassis ATTokmakidis SP. Land versus water exercise in patients with coronary artery disease: effects on body composition, blood lipids, and physical fitness. Am Heart J. 2007;154(3):560.e1560.e6. doi:10.1016/j.ahj.2007.06.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Kruel LFPeyré-Tartaruga LACoertjens MDias ABDa Silva RCRangel AC. Using heart rate to prescribe physical exercise during head-out water immersion. J Strength Cond Res. 2014;28(1):281289. PubMed ID: 23591950 doi:10.1519/JSC.0b013e318295d534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Ayme KGavarry ORossi PDesruelle AVRegnard JBoussuges A. Effect of head-out water immersion on vascular function in healthy subjects. Appl Physiol Nutr Metab. 2014;39:425431. PubMed ID: 24669983 doi:10.1139/apnm-2013-0153

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Alberton CLOlkoski MMPinto SSBecker MEKruel LFM. Cardiorespiratory responses of postmenopausal women to different water exercises. Int J Aquatic Res Educ. 2007;1:363372. doi:10.25035/ijare.01.04.06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Kendrick ZVBinkley HMcGettigan JRuoti R. Effects of water exercise on improving muscular strength and endurance in suburban and inner-city older adults. J Aquatic Phys Ther. 2002;10(1):2127.

    • Search Google Scholar
    • Export Citation
  • 37.

    Raeburn JMEdwards DAEdwards ESRoos BASignorile JF. Aquatic exercise programs improve upper and lower body strength and power in the elderly. Med Sci Sports Exerc. 2011;43(suppl 1):512. doi:10.1249/01.MSS.0000401411.42010.3d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Ambrosini ABBrentano MACoertjens MKruel LFM. The effects of strength training in hydrogymnastics for middle-age women. Int J Aquatic Res Educ. 2010;4:153162. doi:10.25035/ijare.04.02.06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Miller MGCheatham CCPorter ARRicard MDHennigar DBerry DC. Chest- and waist-deep aquatic plyometric training and average force, power, and vertical-jump performance. Int J Aquatic Res Educ. 2007;1(2):145155. doi:10.25035/ijare.01.02.06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Robinson LEDevor STMerrick MABuckworth J. The effects of land vs. aquatic plyometrics on power, torque, velocity, and muscle soreness in women. J Strength Cond Res. 2004;18(1):8491. PubMed ID: 14971978

    • Search Google Scholar
    • Export Citation
  • 41.

    Munguia-Izquierdo DLegaz-Arrese A. Exercise in warm water decreases pain and improves cognitive function in middle-aged women with fibromyalgia. Clin Exp Rheumatol. 2007;25:823830.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    García-Martínez AMDe Paz JAMárquez S. Effects of an exercise programme on self-esteem, self-concept and quality of life in women with fibromyalgia: a randomized controlled trial. Rheumatol Int. 2012;32:18691876. doi:10.1007/s00296-011-1892-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Cooney GMDwan KGreig CAet al. Exercise for depression. Cochrane Database Syst Rev. 2013;(9):CD004366. PubMed ID: 24026850. doi:10.1002/14651858CD004366

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Weiss CRJamieson NB. Women, subjective depression, and water exercise. Health Care Women Int. 1989;10:7588. PubMed ID: 2925535 doi:10.1080/07399338909515839

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Beason KRStaten RS. Can socializing during low to medium impact aquatic exercise act as an antidepressant for older adults? Aquatic Fit Res J. 2007;4(2):410.

    • Search Google Scholar
    • Export Citation
  • 46.

    Maher CGSherrington CHerbert RDMoseley AMElkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713721. PubMed ID: 12882612

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Austr J Physiother. 2009;55:129133. doi:10.1016/S0004-9514(09)70043-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Macedo LGElkins MRMaher CGMoseley AMHerbert RDSherrington C. There was evidence of convergent and construct validity of physiotherapy evidence database quality scale for physiotherapy trials. J Clin Epidemiol. 2010;63(8):920925. PubMed ID: 20171839 doi:10.1016/j.jclinepi.2009.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Arca EAMartinelli BMartin LCWaisberg CBFranco RJ. Aquatic exercise is as effective as dry land training to blood pressure reduction in postmenopausal hypertensive women. Physiother Res Int. 2014;19:9398. PubMed ID: 24022919 doi:10.1002/pri.1565

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Ay AYurtkuran M. Evaluation of hormonal response and ultrasonic changes in the heel bone by aquatic exercise in sedentary postmenopausal women. Am J Phys Med Rehabil. 2003;82:942949. PubMed ID: 14627931 doi:10.1097/01.PHM.0000098039.58584.59

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Ay AYurtkuran M. Influence of aquatic and weight-bearing exercises on quantitative ultrasound variables in postmenopausal women. Am J Phys Med Rehabil. 2005;84:5261. PubMed ID: 15632489 doi:10.1097/01.PHM.0000146500.85850.BE

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Bocalini DSSerra AJMurad NLevy RF. Water- versus land-based exercise effects on physical fitness in older women. Geriatr Gerontol Int. 2008;8:265271. PubMed ID: 19149838 doi:10.1111/j.1447-0594.2008.00485.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Bocalini DSSerra AJRica RLdos Santos L. Repercussions of training and detraining by water-based exercise on functional fitness and quality of life: a short-term follow-up in healthy older women. Clinics. 2010;65(12):13051309. doi:10.1590/S1807-59322010001200013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Broman GQuintana MLindberg TJansson EKaijser L. High intensity deep water training can improve aerobic power in elderly women. Eur J Appl Physiol. 2006;98:117123. PubMed ID: 16924529 doi:10.1007/s00421-006-0237-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Colado JCTriplett NTTella VSaucedo PAbellán J. Effects of aquatic resistance training on health and fitness in postmenopausal women. Eur J Appl Physiol. 2009;106(1):113122. PubMed ID: 19205723 doi:10.1007/s00421-009-0996-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Graef FIPinto RSAlberton CLde Lima WCKruel LF. The effects of resistance training performed in water on muscle strength in the elderly. J Strength Cond Res. 2010;24(11):31503156. PubMed ID: 20940648 doi:10.1519/JSC.0b013e3181e2720d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Moreira LFronza FCSantos RNTeixeira LRKruel LFLazaretti-Castro M. High-intensity aquatic exercises (HydrOS) improve physical function and reduce falls among postmenopausal women. Menopause. 2013;20(10):10121019. PubMed ID: 23531689 doi:10.1097/GME.0b013e3182850138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Moreira LDFronza FCDos Santos RNet al. The benefits of a high-intensity aquatic exercise program (HydrOS) for bone metabolism and bone mass of postmenopausal women. J Bone Miner Metab. 2014;32(4):411419. PubMed ID: 24048909 doi:10.1007/s00774-013-0509-y

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Pernambuco CSBorba-Pinheiro CJVale RGDi Masi FMonteiro PKDantas EH. Functional autonomy, bone mineral density (BMD) and serum osteocalcin levels in older female participants of an aquatic exercise program (AAG). Arch Gerontol Geriatr. 2013;56:466471. PubMed ID: 23375799 doi:10.1016/j.archger.2012.12.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Rica RLCarneiro RMSerra AJRodriguez DPontes FL JrBocalini DS. Effects of water-based exercise in obese older women: impact of short-term follow-up study on anthropometric functional fitness and quality of life parameters. Geriatr Gerontol Int. 2013;13:209214. PubMed ID: 22694304 doi:10.1111/j.1447-0594.2012.00889.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Takeshima NRogers MWatanabe Eet al. Water-based exercise improves health-related aspects of fitness in older women. Med Sci Sports Exerc. 2002;34(3):544551. doi:10.1097/00005768-200203000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Tsourlou TBenik ADipla KZafeiridis AKellis S. The effects of a twenty-four-week aquatic training program on muscular strength performance in healthy elderly women. J Strength Cond Res. 2006;20(4):811818. PubMed ID: 17194242

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Vale RGOliveira RDPernambuco CSde Meneses YPNovaes JdaSde Andrade AdeF. Effects of muscle strength and aerobic training on basal serum levels of IGF-1 and cortisol in elderly women. Arch Gerontol Geriatr. 2009;49:343347. PubMed ID: 19131122 doi:10.1016/j.archger.2008.11.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Guillemin FConstant FCollin JFBoulange M. Short and long–term effect of spa therapy in chronic low back pain. Rheumatology. 1994;33(2):148151. doi:10.1093/rheumatology/33.2.148

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Meredith-Jones KWaters DLegge MJones L. Upright water-based exercise to improve cardiovascular and metabolic health: a qualitative review. Complement Ther Med. 2011;19(2):93103. PubMed ID: 21549260 doi:10.1016/j.ctim.2011.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Asikainen TMKukkonen-Harjula KMiilunpalo S. Exercise for health for early postmenopausal women: a systematic review of randomized controlled trials. Sports Med. 2004;34(11):753778. PubMed ID: 15456348 doi:10.2165/00007256-200434110-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Haskell WLLee IMPate RRet al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):14231434. doi:10.1249/mss.0b013e3180616b27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Chodzko-Zajko WJProctor DNFiatarone Singh MAet al. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):15101530. doi:10.1249/MSS.0b013e3181a0c95c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Torres-Ronda LDel Alcázar X. The properties of water and their applications for training. J Hum Kinet. 2014;44:237248. PubMed ID: 25713684 doi:10.2478/hukin-2014-0129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Adams KO’Shea JPO’Shea KL. Aging: its effects on strength, power, flexibility, and bone density. Strength Cond J. 1999;21(2):6577.

    • Search Google Scholar
    • Export Citation
  • 71.

    Stathokostas LLittle RMVandervoort AAPaterson DH. Flexibility training and functional ability in older adults: a systematic review. J Aging Res. 2012;2012:306818. PubMed ID: 23209904 doi:10.1155/2012/306818

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Garber CEBlissmer BDeschenes MRet al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):13341359. doi:10.1249/MSS.0b013e318213fefb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Sattar MEsfarjani FNezakat-Alhosseini MKordavani L. Effect of aquatic resistance training on blood pressure and physical function of postmenopausal women. ARYA Atheroscler J. 2012;8:S178182.

    • Search Google Scholar
    • Export Citation
  • 74.

    Colado JCSaucedo PTella VNaclerio FChulvi IAbellan J. Effects of an aquatic strength training program on certain cardiovascular risk factors in early-postmenopausal women. Med Sci Sports Exerc. 2007;39(5):S422. doi:10.1249/01.mss.0000274666.46516.2e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Barbosa TMSousa VFSilva AJReis VMMarinho DABragada JA. Effects of musical cadence in the acute physiologic adaptations to head-out aquatic exercises. J Strength Cond Res. 2010;24(1):244250. PubMed ID: 19996781 doi:10.1519/JSC.0b013e3181b296fd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Colado JCTella VTriplett NT. A method for monitoring intensity during aquatic resistance exercises. J Strength Cond Res. 2008;22(6):20452049. PubMed ID: 18841084 doi:10.1519/JSC.0b013e31817ae71f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Colado JCTriplett NT. Monitoring the intensity of aquatic resistance exercises with devices that increase the drag force: an update. Strength Cond J. 2009;31(3):94100. doi:10.1519/SSC.0b013e3181a605b2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    Agostoni EGGurtner GTorri GRahn H. Respiratory mechanics during submersion and negative-pressure breathing. J Appl Physiol. 1966;21:251258. PubMed ID: 5903920 doi:10.1152/jappl.1966.21.1.251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Looker ACMelton LJ IIIBorrud LGShepherd JA. Lumbar spine bone mineral density in US adults: demographic patterns and relationship with femur neck skeletal status. Osteoporos Int. 2012;23:13511360. PubMed ID: 21720893 doi:10.1007/s00198-011-1693-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Braun SIKim YJetton AEKang MMorgan DW. Prediction of bone mineral density and content from measures of physical activity and sedentary behavior in younger and older females. Prev Med Rep. 2015;2:300305. PubMed ID: 26844085 doi:10.1016/j.pmedr.2015.04.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Martyn-St James MCarroll S. High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int. 2006;17:12251240. PubMed ID: 16823548 doi:10.1007/s00198-006-0083-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 82.

    Jones GLSutton A. Quality of life in obese postmenopausal women. Menopause Int. 2008;14:2632. PubMed ID: 18380958 doi:10.1258/mi.2007.007034

  • 83.

    Bocalini DSdos Santos LSerra AJ. Physical exercise improves functional capacity and quality of life in patients with heart failure. Clinics. 2008;63:437442. PubMed ID: 18719752 doi:10.1590/S1807-59322008000400005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Schuch FBPinto SSBagatini NCet al. Water-based exercise and quality of life in women: the role of depressive symptoms. Women Health. 2014;54(2):161175. PubMed ID: 24329155 doi:10.1080/03630242.2013.870634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Pöyhönen TSipilä SKeskinen KLHautala ASavolainen JMälkiä E. Effects of aquatic resistance training on neuromuscular performance in healthy women. Med Sci Sports Exerc. 2002;34(12):21032109. doi:10.1097/00005768-200212000-00036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Batterham SHeywood SKeating J. Systematic review and meta-analysis comparing land and aquatic exercise for people with hip or knee arthritis on function, mobility and other health outcomes. BMC Musculosket Disord. 2011;12:123. doi:10.1186/1471-2474-12-123

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 108 108 20
Full Text Views 3 3 3
PDF Downloads 1 1 1
Altmetric Badge
PubMed
Google Scholar