Associations of School Day Sedentary Behavior and Physical Activity With Gross Motor Skills: Use of Compositional Data Analysis

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: To examine the relationships among school day sedentary times (SED), light physical activity (LPA), and moderate to vigorous physical activity (MVPA) with gross motor skills in children using Compositional Data Analysis. Methods: Participants were 409 children (mean age = 8.4 [1.8] y) recruited across 5 low-income schools. Gross motor skills were assessed using the test for gross motor development—third edition (TGMD-3), and physical activity was assessed using accelerometers. Isometric log-ratio coordinates were calculated by quantifying the relative proportion of percentage of the school day spent in SED, LPA, and MVPA. The associations of the isometric log-ratio coordinates with the TGMD-3 scores were estimated using general linear mixed-effects models adjusted for age, body mass index, estimated aerobic capacity, and school affiliation. Results: A higher proportion of the school day spent in %MVPA relative to %SED and %LPA was significantly associated with higher TGMD-3 total scores (γMVPA = 14.44, P = .01). This relationship was also observed for the ball skills subtest scores (γMVPA = 16.12, P = .003). Conclusions: Replacing %SED and %LPA with %MVPA during school hours may be an effective strategy for improving gross motor skills, specifically ball skills, in low-income elementary school-aged children.

Burns, Kim, Byun, and Brusseau are with the Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT, USA. Kim is also with MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, United Kingdom.

Burns (ryan.d.burns@utah.edu) is corresponding author.
  • 1.

    Cools W, DeMartelaer K, Samaey C, Andries C. Movement skill assessment of typically developing preschool children: a review of seven movement skill assessment tools. J Sports Sci Med. 2009;8(2):154168. PubMed ID: 24149522

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Deflandre A, Lorant J, Gavarry O, Falgairette G. Determinants of physical activity and physical and sports activities in French school children. Percept Mot Skills. 2001;92(2):399414. PubMed ID: 11361300 doi:10.2466/pms.2001.92.2.399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Burton AW, Miller DE. Movement Skill Assessment. Champaign, IL: Human Kinetics; 1998.

  • 4.

    Davis WE, Burton AW. Ecological task analysis: translating movement behavior theory into practice. Adapt Phys Activ Q. 1991;8(2):154177. doi:10.1123/apaq.8.2.154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Ekelund U, Luan J, Sherar LB, et al; International Children’s Accelerometry Database (ICAD) Collaborators. Moderate to vigorous physical activity and sedentary time and cardio-metabolic risk factors in children and adolescents. JAMA. 2012;307(7):704712. PubMed ID: 22337681 doi:10.1001/jama.2012.156

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):5865. PubMed ID: 18094706 doi:10.1038/nrn2298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Biddle SJ, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45(11):886895. PubMed ID: 21807669 doi:10.1136/bjsports-2011-090185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Barnett LM, Van Beurden E, Morgan PJ, et al. Childhood motor skill proficiency as a predictor of adolescent physical activity. J Adolesc Health. 2009;44(3):252259. PubMed ID: 19237111 doi:10.1016/j.jadohealth.2008.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Stodden DF, Goodway JD, Langendorfer SJ, et al. A developmental perspective on the role of motor skill competence in physical activity: an emergent relationship. Quest. 2008;60:290306. doi:10.1080/00336297.2008.10483582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    De Meester A, Stodden D, Brian A, et al. Associations among elementary school children’s actual motor competence, perceived motor competence, physical activity and BMI: a cross-sectional study. PLoS ONE. 2016;11(10):e0164600. PubMed ID: 27736964 doi:10.1371/journal.pone.0164600

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Barnett LM, Morgan PJ, Van Beurden E, Beard JR. Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: a longitudinal assessment. Int J Behav Nutr Phys Act. 2008;5:40. doi:10.1186/1479-5868-5-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Barnett LM, Morgan PJ, Van Beurden E, et al. A reverse pathway? Actual and perceived skill proficiency and physical activity. Med Sci Sports Exerc. 2011;43(5):898904. PubMed ID: 20962694 doi:10.1249/MSS.0b013e3181fdfadd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Robinson LE, Stodden DF, Barnett LM, et al. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015;45(9):12731284. PubMed ID: 26201678 doi:10.1007/s40279-015-0351-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Burns RD, Brusseau TA, Fu Y, Hannon JC. Gross motor skills and cardio-metabolic risk in children: a mediation analysis. Med Sci Sports Exerc. 2017;49(4):746751. PubMed ID: 27824688 doi:10.1249/MSS.0000000000001147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Pedišić Ž, Dumuid D, Olds T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49:118.

    • Search Google Scholar
    • Export Citation
  • 16.

    Gupta N, Mathiassen SE, Mateu-Figueras G, et al. A comparison of standard and compositional data analysis in studies addressing group differences in sedentary behavior and physical activity. Int J Behav Nutr Phys Act. 2018;15(1):53. doi:10.1186/s12966-018-0685-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fairclough SJ, Dumuid D, Taylor S, et al. Fitness, fatness and the reallocation of time between children’s daily movement behaviors: analysis of compositional data. Int J Behav Nutr Phys Act. 2017;14(1):64. PubMed ID: 28486972 doi:10.1186/s12966-017-0521-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dumuid D, Pedisic Z, Stanford TE, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2019;28(3):846857. doi:10.1177/0962280217737805

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Chastin SFM, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel Compositional Data Analysis approach. PLoS ONE. 2015;10(10):e0139984. PubMed ID: 26461112 doi:10.1371/journal.pone.0139984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Evenson KR, Catellier DJ, Gill K, et al. Calibration of two objective measures of physical activity for children. J Sport Sci. 2008;26(14):15571565. doi:10.1080/02640410802334196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):13601368. PubMed ID: 21131873 doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357364. PubMed ID: 20581716 doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Meredith MD, Welk GJ. Fitnessgram/Actvitygram Test Administration Manual. 4th ed. Champaign, IL: Human Kinetics; 2010:6.38.40.

  • 24.

    Mahar MT, Welk GJ, Rowe DA. Estimation of aerobic fitness from PACER performance with and without body mass index. Meas Phys Educ Exerc Sci. 2018;22(3):239249. doi:10.1080/1091367X.2018.1427590

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Estevan I, Molina-García J, Queralt A, et al. Validity and reliability of the Spanish version of the test of gross motor development–3. J Mot Learn Dev. 2017;5(1):6981. doi:10.1123/jmld.2016-0045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Webster EK, Ulrich DA. Evaluation of the psychometric properties of the test of gross motor development-third edition. J Mot Learn Dev. 2017;5(1):4558. doi:10.1123/jmld.2016-0003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Barnett LM, Ridgers ND, Salmon J. Associations between young children’s perceived and actual ball skill competence and physical activity. J Sci Med Sport. 2015;18(2):167171. PubMed ID: 24685052 doi:10.1016/j.jsams.2014.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Trost SG, Pate RR, Sallis JF, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350355. PubMed ID: 11828247 doi:10.1097/00005768-200202000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fairclough SJ, Dumuid D, Mackintosh KA, et al. Adiposity, fitness, health-related quality of life and the reallocation of time between children’s school day activity behaviors: a compositional data analysis. Prev Med Rep. 2018;11:254261. PubMed ID: 30109170 doi:10.1016/j.pmedr.2018.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cohen KE, Morgan PJ, Plotnikoff RC, et al. Fundamental movement skills and physical activity among children living in low-income communities: a cross-sectional study. Int J Behav Nutr Phys Act. 2014;11(1):49. PubMed ID: 24708604 doi:10.1186/1479-5868-11-49

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Barnett LM, Lai SK, Veldman SLC, et al. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016;46(11):16631688. PubMed ID: 26894274 doi:10.1007/s40279-016-0495-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nettlefold L, McKay HA, Warburton DE, et al. The challenge of low physical activity during the school day: at recess, lunch and in physical education. Br J Sports Med. 2011;45(10):813819. PubMed ID: 20215489 doi:10.1136/bjsm.2009.068072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Peterson KE, Fox MK. Addressing the epidemic of childhood obesity through school-based interventions: what has been done and where do we go from here? J Law Med Ethics. 2007;35(1):113130. PubMed ID: 17341220 doi:10.1111/j.1748-720X.2007.00116.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Stodden DF, Gao Z, Goodway JD, Langendorfer SJ. Dynamic relationships between motor skill competence and health-related fitness in youth. Pediatr Exerc Sci. 2014;26(3):231241. PubMed ID: 25111159 doi:10.1123/pes.2013-0027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Centers for Disease Control and Prevention. Comprehensive School Physical Activity Programs: A Guide for Schools. Atlanta, GA: US Department of Health and Human Services; 2013.

    • Search Google Scholar
    • Export Citation
  • 36.

    Burns RD, Fu Y, Fang Y, Hannon JC, Brusseau TA. Effect of a 12-week physical activity program on gross motor skills in children. Percept Mot Skills. 2017;124(6):11211133. PubMed ID: 28728459 doi:10.1177/0031512517720566

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Jones RA, Okely AD, Hinkley T, et al. Promoting gross motor skills and physical activity in childcare: a translational randomized controlled trial. J Sci Med Sport. 2016;19(9):744749. PubMed ID: 26774378 doi:10.1016/j.jsams.2015.10.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 859 859 96
Full Text Views 54 54 0
PDF Downloads 24 24 0