Associations of School Day Sedentary Behavior and Physical Activity With Gross Motor Skills: Use of Compositional Data Analysis

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: To examine the relationships among school day sedentary times (SED), light physical activity (LPA), and moderate to vigorous physical activity (MVPA) with gross motor skills in children using Compositional Data Analysis. Methods: Participants were 409 children (mean age = 8.4 [1.8] y) recruited across 5 low-income schools. Gross motor skills were assessed using the test for gross motor development—third edition (TGMD-3), and physical activity was assessed using accelerometers. Isometric log-ratio coordinates were calculated by quantifying the relative proportion of percentage of the school day spent in SED, LPA, and MVPA. The associations of the isometric log-ratio coordinates with the TGMD-3 scores were estimated using general linear mixed-effects models adjusted for age, body mass index, estimated aerobic capacity, and school affiliation. Results: A higher proportion of the school day spent in %MVPA relative to %SED and %LPA was significantly associated with higher TGMD-3 total scores (γMVPA = 14.44, P = .01). This relationship was also observed for the ball skills subtest scores (γMVPA = 16.12, P = .003). Conclusions: Replacing %SED and %LPA with %MVPA during school hours may be an effective strategy for improving gross motor skills, specifically ball skills, in low-income elementary school-aged children.

Burns, Kim, Byun, and Brusseau are with the Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT, USA. Kim is also with MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, United Kingdom.

Burns (ryan.d.burns@utah.edu) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Cools WDeMartelaer KSamaey CAndries C. Movement skill assessment of typically developing preschool children: a review of seven movement skill assessment tools. J Sports Sci Med. 2009;8(2):154168. PubMed ID: 24149522

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Deflandre ALorant JGavarry OFalgairette G. Determinants of physical activity and physical and sports activities in French school children. Percept Mot Skills. 2001;92(2):399414. PubMed ID: 11361300 doi:10.2466/pms.2001.92.2.399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Burton AWMiller DE. Movement Skill Assessment. Champaign, IL: Human Kinetics; 1998.

  • 4.

    Davis WEBurton AW. Ecological task analysis: translating movement behavior theory into practice. Adapt Phys Activ Q. 1991;8(2):154177. doi:10.1123/apaq.8.2.154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Ekelund ULuan JSherar LBet al; International Children’s Accelerometry Database (ICAD) Collaborators. Moderate to vigorous physical activity and sedentary time and cardio-metabolic risk factors in children and adolescents. JAMA. 2012;307(7):704712. PubMed ID: 22337681 doi:10.1001/jama.2012.156

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hillman CHErickson KIKramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):5865. PubMed ID: 18094706 doi:10.1038/nrn2298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Biddle SJAsare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45(11):886895. PubMed ID: 21807669 doi:10.1136/bjsports-2011-090185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Barnett LMVan Beurden EMorgan PJet al. Childhood motor skill proficiency as a predictor of adolescent physical activity. J Adolesc Health. 2009;44(3):252259. PubMed ID: 19237111 doi:10.1016/j.jadohealth.2008.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Stodden DFGoodway JDLangendorfer SJet al. A developmental perspective on the role of motor skill competence in physical activity: an emergent relationship. Quest. 2008;60:290306. doi:10.1080/00336297.2008.10483582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    De Meester AStodden DBrian Aet al. Associations among elementary school children’s actual motor competence, perceived motor competence, physical activity and BMI: a cross-sectional study. PLoS ONE. 2016;11(10):e0164600. PubMed ID: 27736964 doi:10.1371/journal.pone.0164600

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Barnett LMMorgan PJVan Beurden EBeard JR. Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: a longitudinal assessment. Int J Behav Nutr Phys Act. 2008;5:40. doi:10.1186/1479-5868-5-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Barnett LMMorgan PJVan Beurden Eet al. A reverse pathway? Actual and perceived skill proficiency and physical activity. Med Sci Sports Exerc. 2011;43(5):898904. PubMed ID: 20962694 doi:10.1249/MSS.0b013e3181fdfadd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Robinson LEStodden DFBarnett LMet al. Motor competence and its effect on positive developmental trajectories of health. Sports Med. 2015;45(9):12731284. PubMed ID: 26201678 doi:10.1007/s40279-015-0351-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Burns RDBrusseau TAFu YHannon JC. Gross motor skills and cardio-metabolic risk in children: a mediation analysis. Med Sci Sports Exerc. 2017;49(4):746751. PubMed ID: 27824688 doi:10.1249/MSS.0000000000001147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Pedišić ŽDumuid DOlds T. Integrating sleep, sedentary behaviour, and physical activity research in the emerging field of time-use epidemiology: definitions, concepts, statistical methods, theoretical framework, and future directions. Kinesiology. 2017;49:118.

    • Search Google Scholar
    • Export Citation
  • 16.

    Gupta NMathiassen SEMateu-Figueras Get al. A comparison of standard and compositional data analysis in studies addressing group differences in sedentary behavior and physical activity. Int J Behav Nutr Phys Act. 2018;15(1):53. doi:10.1186/s12966-018-0685-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fairclough SJDumuid DTaylor Set al. Fitness, fatness and the reallocation of time between children’s daily movement behaviors: analysis of compositional data. Int J Behav Nutr Phys Act. 2017;14(1):64. PubMed ID: 28486972 doi:10.1186/s12966-017-0521-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dumuid DPedisic ZStanford TEet al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2019;28(3):846857. doi:10.1177/0962280217737805

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Chastin SFMPalarea-Albaladejo JDontje MLSkelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel Compositional Data Analysis approach. PLoS ONE. 2015;10(10):e0139984. PubMed ID: 26461112 doi:10.1371/journal.pone.0139984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Evenson KRCatellier DJGill Ket al. Calibration of two objective measures of physical activity for children. J Sport Sci. 2008;26(14):15571565. doi:10.1080/02640410802334196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Trost SGLoprinzi PDMoore RPfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):13601368. PubMed ID: 21131873 doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Choi LLiu ZMatthews CEBuchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357364. PubMed ID: 20581716 doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Meredith MDWelk GJ. Fitnessgram/Actvitygram Test Administration Manual. 4th ed. Champaign, IL: Human Kinetics; 2010:6.38.40.

  • 24.

    Mahar MTWelk GJRowe DA. Estimation of aerobic fitness from PACER performance with and without body mass index. Meas Phys Educ Exerc Sci. 2018;22(3):239249. doi:10.1080/1091367X.2018.1427590

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Estevan IMolina-García JQueralt Aet al. Validity and reliability of the Spanish version of the test of gross motor development–3. J Mot Learn Dev. 2017;5(1):6981. doi:10.1123/jmld.2016-0045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Webster EKUlrich DA. Evaluation of the psychometric properties of the test of gross motor development-third edition. J Mot Learn Dev. 2017;5(1):4558. doi:10.1123/jmld.2016-0003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Barnett LMRidgers NDSalmon J. Associations between young children’s perceived and actual ball skill competence and physical activity. J Sci Med Sport. 2015;18(2):167171. PubMed ID: 24685052 doi:10.1016/j.jsams.2014.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Trost SGPate RRSallis JFet al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350355. PubMed ID: 11828247 doi:10.1097/00005768-200202000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fairclough SJDumuid DMackintosh KAet al. Adiposity, fitness, health-related quality of life and the reallocation of time between children’s school day activity behaviors: a compositional data analysis. Prev Med Rep. 2018;11:254261. PubMed ID: 30109170 doi:10.1016/j.pmedr.2018.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cohen KEMorgan PJPlotnikoff RCet al. Fundamental movement skills and physical activity among children living in low-income communities: a cross-sectional study. Int J Behav Nutr Phys Act. 2014;11(1):49. PubMed ID: 24708604 doi:10.1186/1479-5868-11-49

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Barnett LMLai SKVeldman SLCet al. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016;46(11):16631688. PubMed ID: 26894274 doi:10.1007/s40279-016-0495-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nettlefold LMcKay HAWarburton DEet al. The challenge of low physical activity during the school day: at recess, lunch and in physical education. Br J Sports Med. 2011;45(10):813819. PubMed ID: 20215489 doi:10.1136/bjsm.2009.068072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Peterson KEFox MK. Addressing the epidemic of childhood obesity through school-based interventions: what has been done and where do we go from here? J Law Med Ethics. 2007;35(1):113130. PubMed ID: 17341220 doi:10.1111/j.1748-720X.2007.00116.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Stodden DFGao ZGoodway JDLangendorfer SJ. Dynamic relationships between motor skill competence and health-related fitness in youth. Pediatr Exerc Sci. 2014;26(3):231241. PubMed ID: 25111159 doi:10.1123/pes.2013-0027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Centers for Disease Control and Prevention. Comprehensive School Physical Activity Programs: A Guide for Schools. Atlanta, GA: US Department of Health and Human Services; 2013.

    • Search Google Scholar
    • Export Citation
  • 36.

    Burns RDFu YFang YHannon JCBrusseau TA. Effect of a 12-week physical activity program on gross motor skills in children. Percept Mot Skills. 2017;124(6):11211133. PubMed ID: 28728459 doi:10.1177/0031512517720566

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Jones RAOkely ADHinkley Tet al. Promoting gross motor skills and physical activity in childcare: a translational randomized controlled trial. J Sci Med Sport. 2016;19(9):744749. PubMed ID: 26774378 doi:10.1016/j.jsams.2015.10.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 228 228 226
Full Text Views 29 29 29
PDF Downloads 13 13 13
Altmetric Badge
PubMed
Google Scholar