A Prior High-Intensity Exercise Bout Attenuates the Vascular Dysfunction Resulting From a Prolonged Sedentary Bout

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: This study sought to determine the impact of an acute prior bout of high-intensity interval aerobic exercise on attenuating the vascular dysfunction associated with a prolonged sedentary bout. Methods: Ten young (24 ± 1 y) healthy males completed two 3-hour sessions of prolonged sitting with (SIT-EX) and without (SIT) a high-intensity interval aerobic exercise session performed immediately prior. Prior to and 3 hours into the sitting bout, leg vascular function was assessed with the passive leg movement technique, and blood samples were obtained from the lower limb to evaluate changes in oxidative stress (malondialdehyde and superoxide dismutase) and inflammation (interleukin-6). Results: No presitting differences in leg vascular function (assessed via passive leg movement technique-induced hyperemia) were revealed between conditions. After 3 hours of prolonged sitting, leg vascular function was significantly reduced in the SIT condition, but unchanged in the SIT-EX. Lower limb blood samples revealed no alterations in oxidative stress, antioxidant capacity, or inflammation in either condition. Conclusions: This study revealed that lower limb vascular dysfunction was significantly attenuated by an acute presitting bout of high-intensity interval aerobic exercise. Further analysis of lower limb blood samples revealed no changes in circulating oxidative stress or inflammation in either condition.

The authors are with the Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA.

Garten (rsgarten@vcu.edu) is corresponding author.
  • 1.

    Tremblay MS, Aubert S, Barnes JD, et al. Sedentary Behavior Research Network (SBRN)Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Matthews CE, Chen KY, Freedson PS, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875–881. PubMed ID: 18303006 doi:10.1093/aje/kwm390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Healy GN, Matthews CE, Dunstan DW, Winkler EAH, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 200306. Eur Heart J. 2011;32(5):590–597. PubMed ID: 21224291 doi:10.1093/eurheartj/ehq451

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Church TS, Thomas DM, Tudor-Locke C, et al. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS ONE. 2011;6(5):e19657. PubMed ID: 21647427 doi:10.1371/journal.pone.0019657

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Restaino RM, Holwerda SW, Credeur DP, Fadel PJ, Padilla J. Impact of prolonged sitting on lower and upper limb micro- and macrovascular dilator function. Exp Physiol. 2015;100(7):829–838. PubMed ID: 25929229 doi:10.1113/EP085238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Thosar SS, Bielko SL, Mather KJ, Johnston JD, Wallace JP. Effect of prolonged sitting and breaks in sitting time on endothelial function. Med Sci Sports Exerc. 2015;47(4):843–849. PubMed ID: 25137367 doi:10.1249/MSS.0000000000000479

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Vranish JR, Young BE, Kaur J, Patik JC, Padilla J, Fadel PJ. Influence of sex on microvascular and macrovascular responses to prolonged sitting. Am J Physiol Heart Circ Physiol. 2017;312(4):H800–H805. doi:10.1152/ajpheart.00823.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Garten RS, Hogwood AC, Weggen J, et al. Aerobic training status does not attenuate prolonged sitting-induced lower limb vascular dysfunction. Appl Physiol Nutr Metab. 2019;44(4):425–433. PubMed ID: 30257099 doi:10.1139/apnm-2018-0420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Restaino RM, Walsh LK, Morishima T, et al. Endothelial dysfunction following prolonged sitting is mediated by a reduction in shear stress. Am J Physiol Heart Circ Physiol. 2016;310(5):H648–H653. doi:10.1152/ajpheart.00943.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Malhotra A, Cohen D, Syms C, Townsend RR. Blood pressure changes in the leg on standing. J Clin Hypertens. 2002;4(5):350–354. doi:10.1111/j.1524-6175.2002.00767.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH Oxidase. Circ Res. 1998;82(10):1094–1101. PubMed ID: 9622162 doi:10.1161/01.RES.82.10.1094

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    McNally JS, Davis ME, Giddens DP, et al. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol. 2003;285(6):H2290–H2297. PubMed ID: 12958034 doi:10.1152/ajpheart.00515.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hwang J, Ing MH, Salazar A, et al. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res. 2003;93(12):1225–1232. PubMed ID: 14593003 doi:10.1161/01.RES.0000104087.29395.66

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hwang J, Saha A, Boo YC, et al. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to Monocyte adhesion. J Biol Chem. 2003;278(47):47291–47298. PubMed ID: 12958309 doi:10.1074/jbc.M305150200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sorescu GP, Song H, Tressel SL, et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a Nox1-based NADPH oxidase. Circ Res. 2004;95(8):773–779. PubMed ID: 15388638 doi:10.1161/01.RES.0000145728.22878.45

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lu X, Kassab GS. Nitric oxide is significantly reduced in ex vivo porcine arteries during reverse flow because of increased superoxide production. J Physiol. 2004;561(Pt 2):575–582. PubMed ID: 15579542 doi:10.1113/jphysiol.2004.075218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Godbole AS, Lu X, Guo X, Kassab GS. NADPH oxidase has a directional response to shear stress. AJP Hear Circ Physiol. 2008;296(1):H152–H158. doi:10.1152/ajpheart.01251.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Hishikawa K, Luscher TF. Pulsatile stretch stimulates superoxide production in human aortic endothelial cells. Circulation. 1997;96(10):3610–3616.

  • 19.

    Ungvari Z, Csiszar A, Kaminski PM, Wolin MS, Koller A. Chronic high pressure-induced arterial oxidative stress: involvement of protein kinase C-dependent NAD(P)H oxidase and local renin-angiotensin system. Am J Pathol. 2004;165(1):219–226. PubMed ID: 15215177 doi:10.1016/S0002-9440(10)63290-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lehoux S, Esposito B, Merval R, Loufrani L, Tedgui A. Pulsatile stretch-induced extracellular signal-regulated kinase 1/2 activation in organ culture of rabbit aorta involves reactive oxygen species. Arterioscler Thromb Vasc Biol. 2000;20(11):2366–2372. PubMed ID: 11073839 doi:10.1161/01.ATV.20.11.2366

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Morishima T, Restaino RM, Walsh LK, Kanaley JA, Padilla J. Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction. Clin Sci. 2017;131(11):1045–1053. PubMed ID: 28385735 doi:10.1042/CS20170031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Ballard KD, Duguid RM, Berry CW, et al. Effects of prior aerobic exercise on sitting-induced vascular dysfunction in healthy men. Eur J Appl Physiol. 2017:117(12):2509–2518. PubMed ID: 29018989 doi:10.1007/s00421-017-3738-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Gifford JR, Garten RS, Nelson AD, et al. Symmorphosis and skeletal muscle VO2max: in vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human. J Physiol. 2016;594(6):1741–1751. PubMed ID: 26614395 doi:10.1113/JP271229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Barrett-O’Keefe Z, Kaplon RE, Halliwill JR. Sustained postexercise vasodilatation and histamine receptor activation following small muscle-mass exercise in humans. Exp Physiol. 2013;98(1):268–277. doi:10.1113/expphysiol.2012.066605

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Tinken TM, Thijssen DHJ, Black MA, Cable NT, Green DJ. Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol. 2008;586(20):5003–5012. PubMed ID: 18755749 doi:10.1113/jphysiol.2008.158014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Tinken TM, Thijssen DHJ, Hopkins N, Dawson EA, Cable NT, Green DJ. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55(2):312–318. PubMed ID: 20048193 doi:10.1161/HYPERTENSIONAHA.109.146282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hecker M, Mülsch A, Bassenge E, Förstermann U, Busse R. Subcellular localization and characterization of nitric oxide synthase(s) in endothelial cells: physiological implications. Biochem J. 1994;299(Pt 1):247–252. doi:10.1042/bj2990247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Goettsch C, Goettsch W, Brux M, et al. Arterial flow reduces oxidative stress via an antioxidant response element and Oct-1 binding site within the NADPH oxidase 4 promoter in endothelial cells. Basic Res Cardiol. 2011;106(4):551–561. PubMed ID: 21399967 doi:10.1007/s00395-011-0170-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Santos-Lozano A, Santín-Medeiros F, Cardon G, et al. Actigraph GT3X: validation and determination of physical activity intensity cut points. Int J Sports Med. 2013;34(11):975–982. PubMed ID: 23700330 doi:10.1055/s-0033-1337945

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tyldum GA, Schjerve IE, Tjønna AE, et al. Endothelial dysfunction induced by post-prandial lipemia. Complete protection afforded by high-intensity aerobic interval exercise. J Am Coll Cardiol. 2009;53(2):200–206. PubMed ID: 19130989 doi:10.1016/j.jacc.2008.09.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nyberg SK, Berg OK, Helgerud J, Wang E. Blood flow regulation and oxygen uptake during high-intensity forearm exercise. J Appl Physiol. 2017;122(4):907–917. PubMed ID: 28057820 doi:10.1152/japplphysiol.00983.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Garten RS, Groot HJ, Rossman MJ, Gifford JR, Richardson RS. The role of muscle mass in exercise-induced hyperemia. J Appl Physiol. 2014;116(9):1204–1209. PubMed ID: 24674856 doi:10.1152/japplphysiol.00103.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Gifford JR, Richardson RS. CORP: ultrasound assessment of vascular function with the passive leg movement technique. J Appl Physiol. 2017;123(6):1708–1720. PubMed ID: 28883048 doi:10.1152/japplphysiol.00557.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Broxterman RM, Trinity JD, Gifford JR, et al. Single passive leg movement assessment of vascular function: the contribution of nitric oxide. J Appl Physiol. 2017;123(6):1468–1476. PubMed ID: 28860173 doi:10.1152/japplphysiol.00533.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Trinity JD, Groot HJ, Layec G, et al. Nitric oxide and passive limb movement: a new approach to assess vascular function. J Physiol. 2012;590:1413–1425. PubMed ID: 22310310 doi:10.1113/jphysiol.2011.224741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Green DJ, Rowley N, Spence A, et al. Why isn’t flow-mediated dilation enhanced in athletes? Med Sci Sports Exerc. 2013;45(1):75–82. PubMed ID: 22843111 doi:10.1249/MSS.0b013e318269affe

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Spence AL, Carter HH, Naylor LH, Green DJ. A prospective randomized longitudinal study involving 6 months of endurance or resistance exercise. Conduit artery adaptation in humans. J Physiol. 2013;591(5):1265–1275. PubMed ID: 23247114 doi:10.1113/jphysiol.2012.247387

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tinken TM, Thijssen DHJ, Hopkins N, et al. Impact of shear rate modulation on vascular function in humans. Hypertension. 2009;54(2):278–285. PubMed ID: 19546374 doi:10.1161/HYPERTENSIONAHA.109.134361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Widder JD, Chen W, Li L, et al. Regulation of tetrahydrobiopterin biosynthesis by shear stress. Circ Res. 2007;101(8):830–838. PubMed ID: 17704208 doi:10.1161/CIRCRESAHA.107.153809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Lam C-F, Peterson TE, Richardson DM, et al. Increased blood flow causes coordinated upregulation of arterial eNOS and biosynthesis of tetrahydrobiopterin. Am J Physiol Heart Circ Physiol. 2006;290(2):H786–H793. PubMed ID: 16199476 doi:10.1152/ajpheart.00759.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Jones CI, Zhu H, Martin SF, Han Z, Li Y, Alevriadou BR. Regulation of antioxidants and phase 2 enzymes by shear-induced reactive oxygen species in endothelial cells. Ann Biomed Eng. 2007;35(5):683–693. PubMed ID: 17340195 doi:10.1007/s10439-007-9279-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest. 2000;105(11):1631–1639. PubMed ID: 10841522 doi:10.1172/JCI9551

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Inoue N, Ramasamy S, Fukai T, Nerem RM, Harrison DG. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ Res. 1996;79(1):32–37. PubMed ID: 8925565 doi:10.1161/01.RES.79.1.32

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Takeshita S, Inoue N, Ueyama T, Kawashima S, Yokoyama M. Shear stress enhances glutathione peroxidase expression in endothelial cells. Biochem Biophys Res Commun. 2000;273(1):66–71. PubMed ID: 10873565 doi:10.1006/bbrc.2000.2898

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Adams V, Linke A, Kränkel N, et al. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation. 2005;111(5):555–562. PubMed ID: 15699275 doi:10.1161/01.CIR.0000154560.88933.7E

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Duerrschmidt N, Stielow C, Muller G, Pagano PJ, Morawietz H. NO-Mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. J Physiol. 2006;576(2):557–567. doi:10.1113/jphysiol.2006.111070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Groot H, Broxterman R, Garten R, et al. Reliability of the passive leg movement assessment of vascular function. Med Sci Sports Exerc. 2017;49(5S):814. doi:10.1249/01.mss.0000519181.00065.5a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Venturelli M, Layec G, Trinity J, Hart CR, Broxterman RM, Richardson RS. Single passive leg movement-induced hyperemia: a simple vascular function assessment without a chronotropic response. J Appl Physiol. 2017;122(1):28–37. PubMed ID: 27834672 doi:10.1152/japplphysiol.00806.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Morishima T, Restaino RM, Walsh LK, et al. Prolonged sitting-induced leg endothelial dysfunction is prevented by fidgeting. Am J Physiol Hear Circ Physiol. 2016;311(1):H177–H182. doi:10.1152/ajpheart.00297.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Thosar SS, Bielko SL, Wiggins CC, Klaunig JE, Mather KJ, Wallace JP. Antioxidant vitamin C prevents decline in endothelial function during sitting. Med Sci Monit. 2015;21:1015–1021. PubMed ID: 25848890 doi:10.12659/MSM.893192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Padilla J, Sheldon RD, Sitar DM, Newcomer SC. Impact of acute exposure to increased hydrostatic pressure and reduced shear rate on conduit artery endothelial function: a limb-specific response. Am J Physiol Hear Circ Physiol. 2009;297:H1103–H1108. doi:10.1152/ajpheart.00167.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Malek AM. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035. PubMed ID: 10591386 doi:10.1001/jama.282.21.2035

  • 53.

    White SJ, Hayes EM, Lehoux S, Jeremy JY, Horrevoets AJG, Newby AC. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J Cell Physiol. 2011;226(11):2841–2848. PubMed ID: 21302282 doi:10.1002/jcp.22629

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Chao Y, Ye P, Zhu L, et al. Low shear stress induces endothelial reactive oxygen species via the AT1R/eNOS/NO pathway. J Cell Physiol. 2018;233(2):1384–1395. doi:10.1002/jcp.26016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Chao Y, Zhu L, Qu X, et al. Inhibition of angiotension II type 1 receptor reduced human endothelial inflammation induced by low shear stress. Exp Cell Res. 2017;360(2):94–104. PubMed ID: 28843962 doi:10.1016/j.yexcr.2017.08.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Ramkhelawon B, Vilar J, Rivas D, et al. Shear stress regulates angiotensin type 1 receptor expression in endothelial cells. Circ Res. 2009;105(9):869–875. PubMed ID: 19762680 doi:10.1161/CIRCRESAHA.109.204040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Ramkhelawon B, Rivas D, Lehoux S. Shear stress activates extracellular signal-regulated kinase 1/2 via the angiotensin II type 1 receptor. FASEB J. 2013;27(8):3008–3016. PubMed ID: 23585396 doi:10.1096/fj.12-222299

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Hitosugi M, Niwa M, Takatsu A. Rheologic changes in venous blood during prolonged sitting. Thromb Res. 2000;100(5):409–412. PubMed ID: 11150583 doi:10.1016/S0049-3848(00)00348-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Mary DA. The urinary bladder and cardiovascular reflexes. Int J Cardiol. 1989;23(1):11–17. PubMed ID: 2654028 doi:10.1016/0167-5273(89)90323-9

  • 60.

    Tankersley CG, Zappe DH, Meister TG, Kenney WL. Hypohydration affects forearm vascular conductance independent of heart rate during exercise. J Appl Physiol. 1992;73(4):1232–1237. doi:10.1152/jappl.1992.73.4.1232

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 326 326 71
Full Text Views 31 31 3
PDF Downloads 21 21 6