Chronic Standing Desk Use and Arterial Stiffness

Click name to view affiliation

Ian M. Greenlund
Search for other papers by Ian M. Greenlund in
Current site
Google Scholar
PubMed
Close
,
Piersan E. Suriano
Search for other papers by Piersan E. Suriano in
Current site
Google Scholar
PubMed
Close
,
Steven J. Elmer
Search for other papers by Steven J. Elmer in
Current site
Google Scholar
PubMed
Close
,
Jason R. Carter
Search for other papers by Jason R. Carter in
Current site
Google Scholar
PubMed
Close
, and
John J. Durocher
Search for other papers by John J. Durocher in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Sedentary activity and sitting for at least 10 hours per day can increase the risk for cardiovascular disease by more than 60%. Use of standing desks may decrease sedentary time and improve cardiovascular health. Acute standing lowers pulse wave velocity (PWV), but chronic effects remain unknown. The purpose of this study was to determine the effect of chronic standing desk use on arterial stiffness versus seated controls. Methods: A total of 48 adults participated in this study. Twenty-four participants qualified as seated desk users (age 41 [10] y, body mass index 25 [4] kg/m2) and 24 as standing desk users (age 45 [12] y, body mass index 25 [5] kg/m2). Arterial stiffness was assessed as PWV within the aorta, arm, and leg. Results: Carotid–femoral PWV (cfPWV) was not different between seated (6.6 [1.3] m/s) and standing (6.9 [1.3] m/s) groups (P = .47). Similarly, there were no differences in arm or leg PWV between groups (P = .13 and P = .66, respectively). A secondary analysis of traditional factors of age and aerobic fitness revealed significant differences in cfPWV in seated and standing desk participants. Age also significantly influenced cfPWV across conditions. Conclusions: Standing for >50% of a workday did not affect PWV. Consistent with previous research, fitness and age are important modulators of arterial stiffness.

Greenlund, Elmer, and Carter are with the Department of Kinesiology & Integrative Physiology, Michigan Technological University, Houghton, MI. Greenlund, Suriano, and Durocher are with the Department of Biological Sciences, Michigan Technological University, Houghton, MI.

Durocher (jjduroch@mtu.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Baddeley B, Sornalingam S, Cooper M. Sitting is the new smoking: where do we stand? Br J Gen Pract. 2016;66(646):258. PubMed ID: 27127279 doi:10.3399/bjgp16X685009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Taghizadeh N, Vonk JM, Boezen HM. Lifetime smoking history and cause-specific mortality in a cohort study with 43 years of follow-up. PLoS ONE. 2016;11(4):e0153310. PubMed ID: 27055053 doi:10.1371/journal.pone.0153310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Wilmot EG, Edwardson CL, Achana FA, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):28952905. PubMed ID: 22890825 doi:10.1007/s00125-012-2677-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Chomistek AK, Manson JE, Stefanick ML, et al. Relationship of sedentary behavior and physical activity to incident cardiovascular disease: results from the Women’s Health Initiative. J Am Coll Cardiol. 2013;61(23):23462354. PubMed ID: 23583242 doi:10.1016/j.jacc.2013.03.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Horta BL, Schaan BD, Bielemann RM, et al. Objectively measured physical activity and sedentary-time are associated with arterial stiffness in Brazilian young adults. Atherosclerosis. 2015;243(1):148154. PubMed ID: 26386211 doi:10.1016/j.atherosclerosis.2015.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Niiranen TJ, Kalesan B, Hamburg NM, Benjamin EJ, Mitchell GF, Vasan RS. Relative contributions of arterial stiffness and hypertension to cardiovascular disease: the framingham heart study. J Am Heart Assoc. 2016;5(11):pii: e004271. doi:10.1161/JAHA.116.004271

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Donley DA, Fournier SB, Reger BL, et al. Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J Appl Physiol. 2014;116(11):13961404. doi:10.1152/japplphysiol.00151.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Son WM, Sung KD, Cho JM, Park SY. Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension. Menopause. 2017;24(3):262268. PubMed ID: 27779565 doi:10.1097/GME.0000000000000765

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Winkler EAH, Chastin S, Eakin EG, et al. Cardiometabolic impact of changing sitting, standing, and stepping in the workplace. Med Sci Sport Exer. 2018;50(3):516524. doi:10.1249/MSS.0000000000001453

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Zeigler ZS, Mullane SL, Crespo NC, Buman MP, Gaesser GA. Effects of standing and light-intensity activity on ambulatory blood pressure. Med Sci Sport Exer. 2016;48(2):175181. doi:10.1249/MSS.0000000000000754

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Gibbs BB, Kowalsky RJ, Perdomo SJ, Taormina JM, Balzer JR, Jakicic JM. Effect of alternating standing and sitting on blood pressure and pulse wave velocity during a simulated workday in adults with overweight/obesity. J Hypertens. 2017;35(12):24112418. doi:10.1097/HJH.0000000000001463

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):13181327. PubMed ID: 20338492 doi:10.1016/j.jacc.2009.10.061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kingwell BA, Sherrard B, Jennings GL, Dart AM. Four weeks of cycle training increases basal production of nitric oxide from the forearm. Am J Physiol. 1997;272(3 Pt 2):H10701077. PubMed ID: 9087577

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ward LC. Segmental bioelectrical impedance analysis: an update. Curr Opin Clin Nutr Metab Care. 2012;15(5):424429. PubMed ID: 22814626 doi:10.1097/MCO.0b013e328356b944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Roman MJ, Devereux RB, Kizer JR, et al. High central pulse pressure is independently associated with adverse cardiovascular outcome the strong heart study. J Am Coll Cardiol. 2009;54(18):17301734. PubMed ID: 19850215 doi:10.1016/j.jacc.2009.05.070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kline GM, Porcari JP, Hintermeister R, et al. Estimation of VO2max from a one-mile track walk, gender, age, and body weight. Med Sci Sport Exer. 1987;19(3):253259. doi:10.1249/00005768-198706000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: “establishing normal and reference values.” Eur Heart J. 2010;31(19):23382350. doi:10.1093/eurheartj/ehq165

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kruse NT, Hughes WE, Benzo RM, Carr LJ, Casey DP. Workplace strategies to prevent sitting-induced endothelial dysfunction. Med Sci Sport Exer. 2018;50(4):801808. doi:10.1249/MSS.0000000000001484

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Gando Y, Yamamoto K, Murakami H, et al. Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension. 2010;56(3):540546. PubMed ID: 20606102 doi:10.1161/HYPERTENSIONAHA.110.156331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    van de Laar RJ, Ferreira I, van Mechelen W, Prins MH, Twisk JW, Stehouwer CD. Lifetime vigorous but not light-to-moderate habitual physical activity impacts favorably on carotid stiffness in young adults: the Amsterdam growth and health longitudinal study. Hypertension. 2010;55(1):3339. PubMed ID: 19996070 doi:10.1161/HYPERTENSIONAHA.109.138289

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Mulvany MJ, Baumbach GL, Aalkjaer C, et al. Vascular remodeling. Hypertension. 1996;28(3):505506. PubMed ID: 8794840

  • 22.

    Amberson WR. Physiologic adjustments to the standing posture. Uni Md Sch Med Bull 1943;27:127145.

  • 23.

    Cao L, Pilowsky PM. Quiet standing after carbohydrate ingestion induces sympathoexcitatory and pressor responses in young healthy males. Auton Neurosci. 2014;185:112119. PubMed ID: 25129222 doi:10.1016/j.autneu.2014.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cox RH, Guth J, Siekemeyer L, Kellems B, Brehm SB, Ohlinger CM. Metabolic cost and speech quality while using an active workstation. J Phys Act Health. 2011;8(3):332339. PubMed ID: 21487132 doi:10.1123/jpah.8.3.332

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Vaitkevicius PV, Fleg JL, Engel JH, et al. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993;88(4 Pt 1):14561462. PubMed ID: 8403292 doi:10.1161/01.CIR.88.4.1456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ferreira I, Snijder MB, Twisk JW, et al. Central fat mass versus peripheral fat and lean mass: opposite (adverse versus favorable) associations with arterial stiffness? The Amsterdam Growth and Health Longitudinal Study. J Clin Endocrinol Metab. 2004;89(6):26322639. PubMed ID: 15181034 doi:10.1210/jc.2003-031619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Tomoto T, Maeda S, Sugawara J. Relation between arterial stiffness and aerobic capacity: importance of proximal aortic stiffness. Eur J Sport Sci. 2017;17(5):571575. PubMed ID: 28100164 doi:10.1080/17461391.2016.1277787

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Zarrinkoob L, Ambarki K, Wahlin A, et al. Aging alters the dampening of pulsatile blood flow in cerebral arteries. J Cereb Blood Flow Metab. 2016;36(9):15191527. PubMed ID: 26823470 doi:10.1177/0271678X16629486

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Levine JA. Lethal sitting: homo sedentarius seeks answers. Physiology. 2014;29(5):300301.

  • 30.

    Gibbs BB, Kowalsky RJ, Perdomo SJ, Grier M, Jakicic JM. Energy expenditure of deskwork when sitting, standing or alternating positions. Occup Med. 2017;67(2):121127. doi:10.1093/occmed/kqw115

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Creasy SA, Rogers RJ, Byard TD, Kowalsky RJ, Jakicic JM. Energy expenditure during acute periods of sitting, standing, and walking. J Phys Act Health. 2016;13(6):573578. PubMed ID: 26693809 doi:10.1123/jpah.2015-0419

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Reiff C, Marlatt K, Dengel DR. Difference in caloric expenditure in sitting versus standing desks. J Phys Act Health. 2012;9(7):10091011. PubMed ID: 22971879 doi:10.1123/jpah.9.7.1009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Saeidifard F, Medina-Inojosa JR, Supervia M, et al. Differences of energy expenditure while sitting versus standing: a systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25(5):522538. PubMed ID: 29385357 doi:10.1177/2047487317752186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Altenburg TM, Rotteveel J, Dunstan DW, Salmon J, Chinapaw MJ. The effect of interrupting prolonged sitting time with short, hourly, moderate-intensity cycling bouts on cardiometabolic risk factors in healthy, young adults. J Appl Physiol. 2013;115(12):17511756. doi:10.1152/japplphysiol.00662.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Madhura M, Sandhya T. Effect of different phases of menstrual cycle on reflection index, stiffness index and pulse wave velocity in healthy subjects. JCDR. 2014;8(9):BC01.

    • Search Google Scholar
    • Export Citation
  • 36.

    Ounis-Skali N, Mitchell GF, Solomon CG, Solomon SD, Seely EW. Changes in central arterial pressure waveforms during the normal menstrual cycle. J Investig Med. 2006;54(6):321326. PubMed ID: 17134615 doi:10.2310/6650.2006.05055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Moreau KL, Hildreth KL. Vascular aging across the menopause transition in healthy women. Adv Vasc Med. 2014;2014:pii: 204390.

  • 38.

    Xu D, Wang H, Chen S, et al. Aerobic exercise training improves orthostatic tolerance in aging humans. Med Sci Sport Exer. 2017;49(4):728735. doi:10.1249/MSS.0000000000001153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Yu J, Abraham JM, Dowd B, Higuera LF, Nyman JA. Impact of a workplace physical activity tracking program on biometric health outcomes. Prev Med. 2017;105:135141. PubMed ID: 28890355 doi:10.1016/j.ypmed.2017.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3443 550 23
Full Text Views 457 20 12
PDF Downloads 127 6 1