Using Music-Based Cadence Entrainment to Manipulate Walking Intensity

in Journal of Physical Activity and Health

Click name to view affiliation

Dylan C. Perry
Search for other papers by Dylan C. Perry in
Current site
Google Scholar
PubMed
Close
,
Christopher C. Moore
Search for other papers by Christopher C. Moore in
Current site
Google Scholar
PubMed
Close
,
Colleen J. Sands
Search for other papers by Colleen J. Sands in
Current site
Google Scholar
PubMed
Close
,
Elroy J. Aguiar
Search for other papers by Elroy J. Aguiar in
Current site
Google Scholar
PubMed
Close
,
Zachary R. Gould
Search for other papers by Zachary R. Gould in
Current site
Google Scholar
PubMed
Close
,
Catrine Tudor-Locke
Search for other papers by Catrine Tudor-Locke in
Current site
Google Scholar
PubMed
Close
, and
Scott W. Ducharme
Search for other papers by Scott W. Ducharme in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: While previous studies indicate an auditory metronome can entrain cadence (in steps per minute), music may also evoke prescribed cadences and metabolic intensities. Purpose: To determine how modulating the tempo of a single commercial song influences adults’ ability to entrain foot strikes while walking and how this entrainment affects metabolic intensity. Methods: Twenty healthy adults (10 men and 10 women; mean [SD]: age 23.7 [2.7] y, height 172.8 [9.0] cm, mass 71.5 [16.2] kg) walked overground on a large circular pathway for six 5-min conditions; 3 self-selected speeds (slow, normal, and fast); and 3 trials listening to a song with its tempo modulated to 80, 100, and 125 beats per minute. During music trials, participants were instructed to synchronize their step timing with the music tempo. Cadence was measured via direct observation, and metabolic intensity (metabolic equivalents) was assessed using indirect calorimetry. Results: Participants entrained their cadences to the music tempos (mean absolute percentage error = 5.3% [5.8%]). Entraining to a music tempo of 100 beats per minute yielded ≥3 metabolic equivalents in 90% of participants. Trials with music entrainment exhibited greater metabolic intensity compared with self-paced trials (repeated-measures analysis of variance, F1,19 = 8.05, P = .01). Conclusion: This study demonstrates the potential for using music to evoke predictable metabolic intensities.

Perry, Moore, Sands, Aguiar, Gould, and Ducharme are with the Physical Activity & Health Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA. Tudor-Locke is with the University of North Carolina, Charlotte.

Tudor-Locke (Tudor-Locke@uncc.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    USDHHS. 2008 Physical Activity Guidelines for Americans. Washington, DC: US Department of Health and Human Services; 2008.

  • 2.

    Brownson RC, Boehmer TK, Luke DA. Declining rates of physical activity in the United States: what are the contributors? Annu Rev Public Health. 2005;26:421443. PubMed ID: 15760296 doi:10.1146/annurev.publhealth.26.021304.144437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Tudor-Locke C, Han H, Aguiar EJ, et al. How fast is fast enough? Walking cadence (steps/min) as a practical estimate of intensity in adults: a narrative review. Br J Sports Med. 2018;52(12):776788. PubMed ID: 29858465 doi:10.1136/bjsports-2017-097628

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Tudor-Locke C, Rowe DA. Using cadence to study free-living ambulatory behaviour. Sports Med. 2012;42(5):381398. PubMed ID: 22462794 doi:10.2165/11599170-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Tudor-Locke C, Aguiar EJ, Han H, et al. Walking cadence (steps/min) and intensity in 21–40 year olds: CADENCE-adults. Int J Behav Nutr Phys Act. 2019;16(1):8. PubMed ID: 30654810 doi:10.1186/s12966-019-0769-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Thaut MH, McIntosh GC, Rice RR, Miller RA, Rathbun J, Brault JM. Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov Disord. 1996;11(1):193200. doi:10.1002/mds.870110213

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    de Bruin N, Doan JB, Turnbull G, et al. Walking with music is a safe and viable tool for gait training in Parkinson’s disease: the effect of a 13-week feasibility study on single and dual task walking. Parkinsons Dis. 2010;2010:483530. PubMed ID: 20976086

    • Search Google Scholar
    • Export Citation
  • 8.

    Thaut MH. Rhythm, Music, and the Brain: Scientific Foundations and Clinical Applications. New York, NY: Routledge; 2008.

  • 9.

    Ducharme SW, Sands CJ, Moore CC, Aguiar EJ, Hamill J, Tudor-Locke C. Changes to gait speed and the walk ratio with rhythmic auditory cuing. Gait Posture. 2018;66:255259. PubMed ID: 30219585 doi:10.1016/j.gaitpost.2018.09.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bood RJ, Nijssen M, van der Kamp J, Roerdink M. The power of auditory-motor synchronization in sports: enhancing running performance by coupling cadence with the right beats. PLoS ONE. 2013;8(8):e70758. doi:10.1371/journal.pone.0070758

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rowe DA, Kang M, Sutherland R, Holbrook EA, Barreira TV. Evaluation of inactive adults’ ability to maintain a moderate-intensity walking pace. J Sci Med Sport. 2013;16(3):217221. PubMed ID: 22999568 doi:10.1016/j.jsams.2012.08.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wittwer JE, Webster KE, Hill K. Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait Posture. 2013;37(2):219222. PubMed ID: 22871238 doi:10.1016/j.gaitpost.2012.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Peacock L, Hewitt A, Rowe DA, Sutherland R. Stride rate and walking intensity in healthy older adults. J Aging Phys Act. 2014;22(2):276283. PubMed ID: 23799828 doi:10.1123/japa.2012-0333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Rowe DA, McMinn D, Peacock L, et al. Cadence, energy expenditure, and gait symmetry during music-prompted and self-regulated walking in adults with unilateral transtibial amputation. J Phys Act Health. 2014;11(2):320329. PubMed ID: 23364470 doi:10.1123/jpah.2012-0056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Roerdink M, Bank PJ, Peper CL, Beek PJ. Walking to the beat of different drums: practical implications for the use of acoustic rhythms in gait rehabilitation. Gait Posture. 2011;33(4):690694. PubMed ID: 21454077 doi:10.1016/j.gaitpost.2011.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Leman M, Moelants D, Varewyck M, Styns F, van Noorden L, Martens JP. Activating and relaxing music entrains the speed of beat synchronized walking. PLoS ONE. 2013;8(7):e67932. PubMed ID: 23874469 doi:10.1371/journal.pone.0067932

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Leow LA, Rinchon C, Grahn J. Familiarity with music increases walking speed in rhythmic auditory cuing. Ann N Y Acad Sci. 2015;1337:5361. PubMed ID: 25773617 doi:10.1111/nyas.12658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Krumhansl CL. An exploratory study of musical emotions and psychophysiology. Can J Exp Psychol. 1997;51(4):336353. PubMed ID: 9606949 doi:10.1037/1196-1961.51.4.336

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Iwanaga M, Moroki Y. Subjective and physiological responses to music stimuli controlled over activity and preference. J Music Ther. 1999;36(1):2638. PubMed ID: 10519843 doi:10.1093/jmt/36.1.26

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    de Bruin N, Kempster C, Doucette A, Doan JB, Hu B, Brown LA. The effects of music salience on the gait performance of young adults. J Music Ther. 2015;52(3):394419. PubMed ID: 26333954 doi:10.1093/jmt/thv009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Tudor-Locke C, Sisson SB, Collova T, Lee SM, Swan PD. Pedometer-determined step count guidelines for classifying walking intensity in a young ostensibly healthy population. Can J Appl Physiol. 2006;30(6):666676. doi:10.1139/h05-147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tudor-Locke C, Craig CL, Brown WJ, et al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8:79. PubMed ID: 21798015 doi:10.1186/1479-5868-8-79

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Abel M, Hannon J, Mullineaux D, Beighle A. Determination of step rate thresholds corresponding to physical activity intensity classifications in adults. J Phys Act Health. 2011;8(1):4551. PubMed ID: 21297184 doi:10.1123/jpah.8.1.45

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wang H, Zhang YF, Xu LL, Jiang CM. Step rate-determined walking intensity and walking recommendation in Chinese young adults: a cross-sectional study. BMJ Open. 2013;3(1):e001801. doi:10.1136/bmjopen-2012-001801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rosdahl H, Gullstrand L, Salier-Eriksson J, Johansson P, Schantz P. Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method. Eur J Appl Physiol. 2010;109(2):159171. PubMed ID: 20043228 doi:10.1007/s00421-009-1326-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wezenberg D, de Haan A, van Bennekom CA, Houdijk H. Mind your step: metabolic energy cost while walking an enforced gait pattern. Gait Posture. 2011;33(4):544549. PubMed ID: 21330135 doi:10.1016/j.gaitpost.2011.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Tudor-Locke C, Schuna Jr JM, Han H, et al. Cadence (steps/min) and intensity during ambulation in 6–20 year olds: the CADENCE-Kids study. Int J Behav Nutr Phys Act. 2018;15:20. PubMed ID: 29482554 doi:10.1186/s12966-018-0651-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Schlein KM, Coulter SP. Best practices for determining resting energy expenditure in critically ill adults. Nutr Clin Pract. 2014;29(1):4455. PubMed ID: 24336442 doi:10.1177/0884533613515002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McClave SA, Spain DA, Skolnick JL, et al. Achievement of steady state optimizes results when performing indirect calorimetry. JPEN J Parenter Enteral Nutr. 2003;27(1):1620. PubMed ID: 12549593 doi:10.1177/014860710302700116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Styns F, van Noorden L, Moelants D, Leman M. Walking on music. Hum Mov Sci. 2007;26(5):769785. PubMed ID: 17910985 doi:10.1016/j.humov.2007.07.007

  • 31.

    Almarwani M, VanSwearingen JM, Perera S, Sparto PJ, Brach JS. Challenging the motor control of walking: gait variability during slower and faster pace walking conditions in younger and older adults. Arch Gerontol Geriatr. 2016;66:5461. PubMed ID: 27255348 doi:10.1016/j.archger.2016.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng. 2001;123:2732. PubMed ID: 11277298 doi:10.1115/1.1336798

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nascimbeni A, Minchillo M, Salatino A, Morabito U, Ricci R. Gait attentional load at different walking speeds. Gait Posture. 2015;41(1):304306. PubMed ID: 25270327 doi:10.1016/j.gaitpost.2014.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Otter AD, Geurts A, Mulder T, Duysens J. Speed related changes in muscle activity from normal to very slow walking speeds. Gait Posture. 2004;19(3):270278. doi:10.1016/S0966-6362(03)00071-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Laurent M, Pailhous J. A note on modulation of gait in man: effects of constraining stride length and frequency. Hum Mov Sci. 1986;5:333343. doi:10.1016/0167-9457(86)90012-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Bertram JE, Ruina A. Multiple walking speed-frequency relations are predicted by constrained optimization. J Theor Biol. 2001;209(4):445453. PubMed ID: 11319893 doi:10.1006/jtbi.2001.2279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Zatsiorsky VM, Werner SL, Kaimin MA. Basic kinematics of walking: step length and step frequency. A review. J Sports Med Phys Fitness. 1994;34(2):109134.

    • Search Google Scholar
    • Export Citation
  • 38.

    Bertram JE. Constrained optimization in human walking: cost minimization and gait plasticity. J Exp Biol. 2005;208:979991. PubMed ID: 15767300 doi:10.1242/jeb.01498

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Juslin PN, Laukka P. Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J New Music Res. 2004;33(3):217238. doi:10.1080/0929821042000317813

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Beckett A. The effects of music on exercise as determined by physiological recovery heart rates and distance. J Music Ther. 1990;27(3):126136. doi:10.1093/jmt/27.3.126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Middleton KR, Anton SD, Perri MG. Long-term adherence to health behavior change. Am J Lifestyle Med. 2013;7(6):395404. PubMed ID: 27547170 doi:10.1177/1559827613488867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Teixeira PJ, Carraca EV, Markland D, Silva MN, Ryan RM. Exercise, physical activity, and self-determination theory: a systematic review. Int J Behav Nutr Phys Act. 2012;9:78. PubMed ID: 22726453 doi:10.1186/1479-5868-9-78

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Segar ML, Richardson CR. Prescribing pleasure and meaning: cultivating walking motivation and maintenance. Am J Prev Med. 2014;47(6):838841. PubMed ID: 25172091 doi:10.1016/j.amepre.2014.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ekkekakis P. People have feelings! Exercise psychology in paradigmatic transition. Curr Opin Psychol. 2017;16:8488. PubMed ID: 28813362 doi:10.1016/j.copsyc.2017.03.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A. 2001;98(20):1181811823. PubMed ID: 11573015 doi:10.1073/pnas.191355898

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Thaut MH, Davis WB. The influence of subject-selected versus experimenter-chosen music on affect, anxiety, and relaxation. J Music Ther. 1993;30(4):210223. doi:10.1093/jmt/30.4.210

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3525 1074 21
Full Text Views 71 15 1
PDF Downloads 76 23 1