Combined Exercise Modulates Cortisol, Testosterone, and Immunoglobulin A Levels in Individuals Living With HIV/AIDS

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Combined exercise (CE) has been recommended for individuals living with HIV/AIDS (ILWHA) under antiretroviral therapy. However, depending on the intensity and duration, physical exercise may occasionally increase inflammatory parameters and reduce immunological responses that if not reversed, cause health injury specifically in this population. Information about immunological and hormonal responses after CE in ILWHA has not been completely elucidated. Therefore, the aim is to verify the acute effects of CE on cortisol, testosterone, immunoglobulin A, and pro-inflammatory and anti-inflammatory cytokines over 24 hours in ILWHA. Methods: Noninfected individuals and ILWHA undergone 5 sessions of CE prior to the acute assessment session. Seventy-two hours after the last session, the subjects were submitted to one session of CE (aerobic exercise: 25 min at 60–70% reserve heart rate and resistance exercise: 3 sets of 15 maximum repetitions of 6 exercises). Saliva samples were collected before, immediately, 6 and 24 hours after CE. Results: CE reduced cortisol (6 h: 2.54 [0.58] vs 0.65 [0.22] pg·mL−1; P = .02), increased testosterone (all moments) and immunoglobulin A levels (24 h: 255.3 [44.7] vs 349.2 [41.9] μm·mL−1; P = .01) without significant difference in cytokines levels in ILWHA. Conclusion: CE modulates cortisol, testosterone, and immunoglobulin A levels without the change in immunological parameters in ILWHA.

Melo is with the Laboratory of Exercise Physiology (LAFISE), Federal University of Minas Gerais, Belo Horizonte, Brazil. Guariglia is with Estácio de Sá de Ourinhos University, Ourinhos-SP, Brazil. Pedro, Peres, and Franzói de Moraes are with the Department of Physiological Sciences, State University of Maringá, Maringá, Brazil. Bertolini is with the Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil. de Paula Ramos is with the Department of Histology, Biology Science Center, State University of Londrina, Londrina, Brazil. Franzói de Moraes is also with the Laboratory of Exercise Physiology—LabFise, Department of Physiological Sciences, State University of Maringá, Maringá, Brazil.

Franzói de Moraes (smfmoraes@uem.br) is corresponding author.
  • 1.

    Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143–1211. doi:10.1002/cphy.c110025

  • 2.

    Feinstein MJ, Bahiru E, Achenbach C, et al. Patterns of cardiovascular mortality for HIV-infected adults in the United States: 1999 to 2013. Am J Cardiol. 2016;117(2):214–220. doi:10.1016/J.AMJCARD.2015.10.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    O’Brien KK, Tynan A-M, Nixon SA, Glazier RH. Effectiveness of aerobic exercise for adults living with HIV: systematic review and meta-analysis using the Cochrane Collaboration protocol. BMC Infect Dis. 2016;16(1):182. doi:10.1186/s12879-016-1478-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dolan SE, Frontera W, Librizzi J, et al. Effects of a supervised home-based aerobic and progressive resistance training regimen in women infected with human immunodeficiency virus. Arch Intern Med. 2006;166(11):1225. doi:10.1001/archinte.166.11.1225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Dudgeon WD, Jaggers JR, Phillips KD, et al. Moderate-intensity exercise improves body composition and improves physiological markers of stress in HIV-infected men. ISRN AIDS. 2012;2012:145127. doi:10.5402/2012/145127

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hand GA, Phillips KD, Dudgeon WD, William Lyerly G, Larry Durstine J, Burgess SE. Moderate intensity exercise training reverses functional aerobic impairment in HIV-infected individuals. AIDS Care. 2008;20(9):1066–1074. doi:10.1080/09540120701796900

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Guariglia DA, Pedro RE, Deminice R, Rosa FT, Peres SB, Franzói De Moraes SM. Effect of combined training on body composition and metabolic variables in people living with HIV: a randomized clinical trial. Cytokine. 2018;111:505–510. doi:10.1016/j.cyto.2018.05.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Pedro RE, Guariglia DA, Okuno NM, Deminice R, Peres SB, Moraes SMF. Effects of 16 weeks of concurrent training on resting heart rate variability and cardiorespiratory fitness in people living with HIV/AIDS using antiretroviral therapy: a randomized clinical trial. J Strength Cond Res. 2016;30(12):3494–3502. doi:10.1519/JSC.0000000000001454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Alves GN, Tavares AM, Vieira PJC, Sprinz E, Ribeiro JP. Oral L-arginine modulates blood lactate and interleukin-6 after exercise in HIV-infected men. Int J Sports Med. 2014;35(4):339–343. doi:10.1055/s-0032-1331740

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dudgeon WD, Phillips KD, Durstine JL, et al. Individual exercise sessions alter circulating hormones and cytokines in HIV-infected men. Appl Physiol Nutr Metab. 2010;35(4):560–568. doi:10.1139/H10-045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Melo BP, Pedro RE, Guariglia DA, Peres SB, De Moraes SMF. Acute responses of physical exercise in people infected by HIV: a systematic review. Rev Bras Med do Esporte. 2017;23(2). doi:10.1590/1517-869220172302158763

    • Search Google Scholar
    • Export Citation
  • 12.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–156. doi:10.1016/S0735-1097(00)01054-8

  • 13.

    Hill EE, Zack E, Battaglini C, Viru M, Viru A, Hackney AC. Exercise and circulating Cortisol levels: the intensity threshold effect. J Endocrinol Invest. 2008;31(7):587–591. doi:10.1007/BF03345606

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bozovic D, Racic M, Ivkovic N. Salivary cortisol levels as a biological marker of stress reaction. Med Arch. 2013;67(5):374–377.

  • 15.

    Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011;335(1):2–13. doi:10.1016/J.MCE.2010.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34(2):163–171. doi:10.1016/J.PSYNEUEN.2008.10.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14(1):58–74. doi:10.1038/nrd4467

  • 18.

    Grinspoon S, Mulligan K. Weight loss and wasting in patients infected with human immunodeficiency virus. Clin Infect Dis. 2003;36(s2):S69–S78. doi:10.1086/367561

  • 19.

    Morley JE, Thomas DR, Wilson M-M. Cachexia: pathophysiology and clinical relevance. Am J Clin Nutr. 2006;83(4):735–743. doi:10.1093/ajcn/83.4.735

  • 20.

    Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737–763.

  • 21.

    Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–184. doi:10.1016/J.CMET.2012.12.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the Real Polypill. Physiology. 2013;28(5):330–358. doi:10.1152/physiol.00019.2013

  • 23.

    Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol. 2016;219(Pt 2):205–213. doi:10.1242/jeb.128207

  • 24.

    Gleeson M, Pyne DB. Respiratory inflammation and infections in high-performance athletes. Immunol Cell Biol. 2016;94(2):124–131. doi:10.1038/icb.2015.100

  • 25.

    Papacosta E, Nassis GP. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sport. 2011;14(5):424–434. doi:10.1016/J.JSAMS.2011.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Neville V, Gleeson M, Folland JP. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc. 2008;40(7):1228–1236. doi:10.1249/MSS.0b013e31816be9c3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Rosa L, Teixeira A, Lira F, Tufik S, Mello M, Santos R. Moderate acute exercise (70% VO2 peak) induces TGF-β, α-amylase and IgA in saliva during recovery. Oral Dis. 2014;20(2):186–190. doi:10.1111/odi.12088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sari-Sarraf V, Reilly T, Doran D. Salivary IgA response to intermittent and continuous exercise. Int J Sports Med. 2006;27(11):849–855. doi:10.1055/s-2006-923777

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Usui T, Yoshikawa T, Orita K, et al. Changes in salivary antimicrobial peptides, immunoglobulin A and cortisol after prolonged strenuous exercise. Eur J Appl Physiol. 2011;111(9):2005–2014. doi:10.1007/s00421-011-1830-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Christeff N, Melchior J-C, de Truchis P, Perronne C, Gougeon M-L. Increased serum interferon alpha in HIV-1 associated lipodystrophy syndrome. Eur J Clin Invest. 2002;32(1):43–50.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lihn AS, Richelsen B, Pedersen SB, et al. Increased expression of TNF-α, IL-6, and IL-8 in HALS: implications for reduced adiponectin expression and plasma levels. Am J Physiol Metab. 2003;285(5):E1072–E1080. doi:10.1152/ajpendo.00206.2003

    • Search Google Scholar
    • Export Citation
  • 32.

    Bauer A-M, Sternfeld T, Horster S, Schunk M, Goebel F-D, Bogner J. Kinetics of lactate metabolism after submaximal ergometric exercise in HIV-infected patients. HIV Med. 2004;5(5):371–376. doi:10.1111/j.1468-1293.2004.00237.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cade WT, Reeds DN, Mittendorfer B, et al. Blunted lipolysis and fatty acid oxidation during moderate exercise in HIV-infected subjects taking HAART. Am J Physiol Metab. 2007;292(3):E812–E819. doi:10.1152/ajpendo.00300.2006

    • Search Google Scholar
    • Export Citation
  • 34.

    Deresz LF, Sprinz E, Kramer AS, et al. Regulation of oxidative stress in response to acute aerobic and resistance exercise in HIV-infected subjects: a case-control study. AIDS Care. 2010;22(11):1410–1417. doi:10.1080/09540121003758549.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Phillips EJ, Ottaway CA, Freedman J, et al. The Effect of Exercise on Lymphocyte Redistribution and Leucocyte Function in Asymptomatic HIV-Infected Subjects. Brain Behav Immun. 1997;11(3):217–227. doi:10.1006/BRBI.1997.0494

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ullum H, Palmø J, Halkjaer-Kristensen J, et al. The effect of acute exercise on lymphocyte subsets, natural killer cells, proliferative responses, and cytokines in HIV-seropositive persons. J Acquir Immune Defic Syndr. 1994;7(11):1122–1133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Pinto SS, Alberton CL, Bagatini NC, et al. Neuromuscular adaptations to water-based concurrent training in postmenopausal women: effects of intrasession exercise sequence. Age. 2015;37(1):9751. doi:10.1007/s11357-015-9751-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Shirtcliff EA, Granger DA, Schwartz E, Curran MJ. Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology. 2001;26(2):165–173. doi:10.1016/S0306-4530(00)00042-1.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Slavish DC, Graham-Engeland JE, Smyth JM, Engeland CG. Salivary markers of inflammation in response to acute stress. Brain Behav Immun. 2015;44:253–269. doi:10.1016/J.BBI.2014.08.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 249 248 143
Full Text Views 5 5 1
PDF Downloads 4 4 1