Differential Acute Effect of High-Intensity Interval or Continuous Moderate Exercise on Cognition in Individuals With Parkinson’s Disease

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: People with Parkinson’s disease (PD) present cognitive impairments, which deteriorate their quality of life and increase disability. Acute aerobic exercise has demonstrated favorable effects on cognitive function in healthy neurologically individuals, but these effects have a dose–response relationship. Therefore, this study aimed to investigate the acute effects of high-intensity interval training (HIIT) versus continuous moderate-intensity training (MICT) on cognitive functions in people with PD. Methods: A total of 14 individuals with PD performed cognitive tests, before and after 3 sessions—control session (CON), HIIT, and MICT. HIIT and MICT were performed on a stationary bicycle. HIIT consisted of a 25-minute exercise of high-intensity intervals (1 min) alternated with moderate-intensity intervals (2 min). MICT consisted of a 30-minute moderate-intensity exercise. CON was 30 minutes of seated resting. The cognitive parameters were compared by a mixed-model analysis for repeated measures. Results: Acute effects of exercise were according to its type: MICT—improved immediate auditory memory (P < .01); HIIT—improved immediate auditory memory (P < .02), attention (P < .001), and sustained attention (P < .01); and CON—no effects on cognitive function. Conclusions: Acute aerobic exercise was able to promote better cognitive performance in people with PD. The effects on cognition were exercise intensity dependent.

Fiorelli is with the Department of Physiotherapy, Universidade do Sagrado Coração, Bauru, São Paulo, Brazil. Ciolac and Fernandes are with Exercise and Chronic Disease Research Laboratory, Department of Physical Education, São Paulo State University (UNESP), Bauru, São Paulo, Brazil. Simieli, Silva, and Barbieri are with Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, São Paulo State University (UNESP), Bauru, São Paulo, Brazil. Christofoletti is with Biological and Health Sciences Center, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.

Barbieri (barbieri@fc.unesp.br) is corresponding author.
  • 1.

    Stella F, Gobbi LTB, Gobbi S, Oliani MM, Tanaka K, Pieruccini-Faria F. Early impairment of cognitive functions in Parkinson’s disease. Arq Neuropsiquiatr. 2007;65(2B):406410. doi:10.1590/S0004-282X2007000300008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Goldman JG, Weintraub D. Advances in the treatment of cognitive impairment in Parkinson’s disease. Mov Disord. 2015;30(11):14711489. PubMed ID: 26297863 doi:10.1002/mds.26352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Duchesne C, Lungu O, Nadeau A, et al. Enhancing both motor and cognitive functioning in Parkinson’s disease: aerobic exercise as a rehabilitative intervention. Brain Cogn. 2015;99:6877. PubMed ID: 26263381 doi:10.1016/j.bandc.2015.07.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dirnberger G, Jahanshahi M. Executive dysfunction in Parkinson’s disease: a review. J Neuropsychol. 2013;7:193224. PubMed ID: 24007368 doi:10.1111/jnp.12028

  • 5.

    Pagonabarraga J, Kulisevsky J. Cognitive impairment and dementia in Parkinson’s disease. Neurobiol Dis. 2012;46(3):590596. PubMed ID: 22484304 doi:10.1016/j.nbd.2012.03.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Aarsland D, Brønnick K, Larsen JP, Tysnes OB, Alves G. Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest Study. Neurology. 2009;72(13):11211126. PubMed ID: 19020293 doi:10.1212/01.wnl.0000338632.00552.cb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jonasson LS, Nyberg L, Kramer AF, Lundquist A, Riklund K, Boraxbekk CJ. Aerobic exercise intervention, cognitive performance, and brain structure: results from the Physical Influences on Brain in Aging (PHIBRA) Study. Front Aging Neurosci. 2017;8:336. PubMed ID: 28149277 doi:10.3389/fnagi.2016.00336

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Petzinger GM, Holschneider DP, Fischer BE, et al. The effects of exercise on dopamine neurotransmission in Parkinson’s disease: targeting neuroplasticity to modulate basal ganglia circuitry. Brain Plast. 2015;1(1):2939. PubMed ID: 26512345 doi:10.3233/BPL-150021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9):22432257. doi:10.1016/j.neubiorev.2013.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 2010;40(9):765801. PubMed ID: 20726622 doi:10.2165/11534530-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gomez-Pinilla F, Vaynman S, Ying Z. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci. 2008;28(11):22782287. doi:10.1111/j.1460-9568.2008.06524.x PubMed ID: 19046371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    White LJ, Castellano V. Exercise and brain health—implications for multiple sclerosis: part II—immune factors and stress hormones. Sports Med. 2008;38(3):179186. PubMed ID: 18278981

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Loprinzi PD, Frith E, Edwards MK, Sng E, Ashpole N. The effects of exercise on memory function among young to middle-aged adults: systematic review and recommendations for future research. Am J Heal Promot. 2018;32(3):691704. doi:10.1177/0890117117737409

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Loprinzi PD, Edwards MK, Frith E. Potential avenues for exercise to activate episodic memory-related pathways: a narrative review. Eur J Neurosci. 2017;46(5):20672077. PubMed ID: 28700099 doi:10.1111/ejn.13644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Colcombe SJ, Erickson KI, Scalf PE, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):11661170. PubMed ID: 17167157

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Snigdha S, de Rivera C, Milgram NW, Cotman CW. Exercise enhances memory consolidation in the aging brain. Front Aging Neurosci. 2014;6:3. PubMed ID: 24550824 doi:10.3389/fnagi.2014.00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hogan CL, Mata J, Carstensen LL. Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychol Aging. 2013;28(2):587594. PubMed ID: 23795769 doi:10.1037/a0032634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Alves CRR, Tessaro VH, Teixeira LAC, et al. Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Percept Mot Skills. 2014;118(1):6372. PubMed ID: 24724513 doi:10.2466/22.06.PMS.118k10w4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Jaffery A, Edwards MK, Loprinzi PD. The effects of acute exercise on cognitive function: Solomon experimental design. J Prim Prev. 2018. 39(1):3746. PubMed ID: 29305752 doi:10.1007/s10935-017-0498-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ekkekakis P, Hall EE, VanLanduyt LM, Petruzzello SJ. Walking in (affective) circles: can short walks enhance affect? J Behav Med. 2000;23(3):245275. PubMed ID: 10863677 doi:10.1023/A:1005558025163

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ratey JJ, Loehr JE. The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev Neurosci. 2011;22(2):171185. PubMed ID: 21417955 doi:10.1515/RNS.2011.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Loprinzi PD, Kane CJ. Exercise and cognitive function: a randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clin Proc. 2015;90(4):450460. PubMed ID: 25746399 doi:10.1016/j.mayocp.2014.12.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Chang YK, Chu CH, Wang CC, et al. Dose-response relation between exercise duration and cognition. Med Sci Sports Exerc. 2015;47(1):159165. PubMed ID: 24870572 doi:10.1249/MSS.0000000000000383

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181184. doi:10.1136/jnnp.55.3.181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Goetz CG, Poewe W, Rascol O, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord. 2004;19(9):10201028. PubMed ID: 15372591 doi:10.1002/mds.20213

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hoehn MM, Yahr MD. Parkinsonism: onset, progression, and mortality. Neurology. 1967;50(2):318. doi:10.1212/WNL.17.5.427

  • 27.

    Almeida OP. Mini mental state examination and the diagnosis of dementia in Brazil. Arq Neuropsiquiatr. 1998;56(3B):605612. PubMed ID: 9850757 doi:10.1590/S0004-282X1998000400014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Fahn S, Elton R. Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne DB, Goldstein M eds., Recent Developments in Parkinson’s Disease, (Vol 2). Florham Park, NJ: Macmillan Health Care Information; 1987:153163.

    • Search Google Scholar
    • Export Citation
  • 29.

    Wechsler D. Wechsler Adult Intelligence Scale–Fourth Edition (WAIS–IV). San Antonio, TX: NCS Pearson; 2008. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Wechsler+Adult+Intelligence+Scale+-+3rd+edition#3%0Ahttp://www.statisticssolutions.com/academic-solutions/resources/directory-of-survey-instruments/wechsler-adult-intelligence-scale-fourth-edit. Accessed 20 Febuary, 2017

    • Search Google Scholar
    • Export Citation
  • 30.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 31.

    Cohen J. Statistical power analysis for the behavioral sciences. Stat Power Anal Behav Sci. 1988;2:567. doi:10.1234/12345678

  • 32.

    Petzinger GM, Fisher BE, Akopian G, et al. The role of exercise in facilitating basal ganglia function in Parkinson’s disease. Neurodegener Dis Manag. 2011;1(2):157170. PubMed ID: 23805167 doi:10.2217/nmt.11.16

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Vaynman S, Gomez-Pinilla F. License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair. 2005;19(4):283295. PubMed ID: 16263961 doi:10.1177/1545968305280753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. 2004;20(10):25802590. PubMed ID: 15548201 doi:10.1111/j.1460-9568.2004.03720.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Murer M., Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol. 2001;63(1):71124. PubMed ID: 11040419 doi:10.1016/S0301-0082(00)00014-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Coelho FGDM, Vital TM, Stein AM, et al. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheimer’s Dis. 2014;39(2):401408. doi:10.3233/JAD-131073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39(4):728734. doi:10.1249/mss.0b013e31802f04c7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Cho H, Kim J, Kim S, Son YH, Lee N, Jung SH. The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO2max performance in healthy college men. Neurosci Lett. 2012;519(1):7883. PubMed ID: 22617010 doi:10.1016/j.neulet.2012.05.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    MacIntosh BJ, Crane DE, Sage MD, et al. Impact of a single bout of aerobic exercise on regional brain perfusion and activation responses in healthy young adults. PLoS ONE. 2014;9(1):85163. PubMed ID: 24416356 doi:10.1371/journal.pone.0085163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Ogoh S, Ainslie PN. Cerebral blood flow during exercise: mechanisms of regulation. J Appl Physiol. 2009;107(5):13701380. PubMed ID: 19729591 doi:10.1152/japplphysiol.00573.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Smith JC, Paulson ES, Cook DB, Verber MD, Tian Q. Detecting changes in human cerebral blood flow after acute exercise using arterial spin labeling: implications for fMRI. J Neurosci Methods. 2010;191(2):258262. PubMed ID: 20603148 doi:10.1016/j.jneumeth.2010.06.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Poulton NP, Muir GD. Treadmill training ameliorates dopamine loss but not behavioral deficits in hemi-Parkinsonian rats. Exp Neurol. 2005;193(1):181197. PubMed ID: 15817277 doi:10.1016/j.expneurol.2004.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Meeusen R, Piacentini MF. Exercise and neurotransmission: a window to the future? Eur J Sport Sci. 2001;1(1):112. doi:10.1080/17461390100071103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Meeusen R, Piacentini MF. Exercise, fatigue, neurotransmission and the influence of the neuroendocrine axis. Adv Exp Med Biol. 2003;527:521525. PubMed ID: 15206769

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Kehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurol. 2010;9(12):12001213. PubMed ID: 20880750 doi:10.1016/S1474-4422(10)70212-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Ma Q. Beneficial effects of moderate voluntary physical exercise and its biological mechanisms on brain health. Neurosci Bull. 2008;24(4):265270. PubMed ID: 18668156 doi:10.1007/s12264-008-0402-1

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1328 1067 78
Full Text Views 66 51 0
PDF Downloads 29 24 1