The Effect of an Exercise Intervention During Early Lactation on Bone Mineral Density During the First Year Postpartum

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: During lactation, women may lose up to 10% of bone mineral density (BMD) at trabecular-rich sites. Previous studies show that resistance exercise may slow BMD; however, the long-term effects of exercise on BMD during lactation have not been reported. Objective: To evaluate the effect of two 16-week exercise interventions (4- to 20-wk postpartum) in lactating women at 1-year postpartum on lumbar spine, total body, and hip BMD. Methods: To increase sample size at 1-year postpartum, two 16-week exercise interventions were combined for analysis. At 4-week postpartum, 55 women were randomized to intervention group (weight bearing aerobic exercise and resistance exercise) or control group (no exercise) for 16-week, with a 1-year postpartum follow-up. BMD was measured by dual-energy X-ray absorptiometry. Repeated-measures analysis of covariance was used to test for time and group differences for BMD controlling for prolactin concentration and dietary calcium at 1-year postpartum. Results: Change in lumbar spine BMD was significantly different over time and between groups from 4-week to 1-year postpartum, when controlling for prolactin concentration and dietary calcium. There were no significant differences between groups in total body and hip BMD. Conclusion: These results suggest that resistance exercise may slow bone loss during lactation, resulting in higher BMD levels at 1-year postpartum.

Colleran is with the Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, NC. Hiatt is with Novant Health, Matthews, NC. Wideman and Lovelady are with The University of North Carolina at Greensboro, Greensboro, NC.

Colleran (hcolleran@ncat.edu) is corresponding author.
  • 1.

    Kovacs CS. Calcium and bone metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia. 2005;10(2):105–118. PubMed ID: 16025218 doi:10.1007/s10911-005-5394-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Krebs NF, Reidinger CJ, Robertson AD, Brenner M. Bone mineral density changes during lactation: maternal, dietary, and biochemical correlates. Am J Clin Nutr. 1997;65(6):1738–1746. PubMed ID: 9174469 doi:10.1093/ajcn/65.6.1738

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    National Institute for Health Osteoporosis and Related Bone Disease National Resource Center. Osteoporosis. 2015. https://www.bones.nih.gov/health-info/bone/osteoporosis. Accessed April 20, 2018.

    • Search Google Scholar
    • Export Citation
  • 4.

    Bassey E, Rothwell M, Littlewood J, Pye D. Pre- and Postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res. 1998;13(12):1805–1813. PubMed ID: 9844097 doi:10.1359/jbmr.1998.13.12.1805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vainionpaa A, Korpelainen R, Leppaluoto J, Jamsa T. Effects of high-impact exercise on bone mineral density: a randomized controlled trial in premenopausal women. Osteoporos Int. 2005;16:191–197. PubMed ID: 15221206 doi:10.1007/s00198-004-1659-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Singh JA, Schmitz KH, Petit MA. Effect of resistance exercise on bone mineral density in premenopausal women. Joint Bone Spine. 2009;76(3):273–280. PubMed ID: 19217817 doi:10.1016/j.jbspin.2008.07.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Winters-Stone KM, Snow CM. Site-specific response of bone to exercise in premenopausal women. Bone. 2006;39(6):1203–1209. PubMed ID: 16876495 doi:10.1016/j.bone.2006.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Soltani S, Hunter GR, Kazemi A, Shab-Bidar S. The effects of weight loss approaches on bone mineral density in adults: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 2016;27(9):2655–2671. PubMed ID: 27154437 doi:10.1007/s00198-016-3617-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lovelady CA, Bopp MJ, Colleran HL, Mackie HK, Wideman L. Effect of exercise training on loss of bone mineral density during lactation. Med Sci Sports Exerc. 2009;41(10):1902–1907. PubMed ID: 19727023 doi:10.1249/MSS.0b013e3181a5a68b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Colleran HL, Wideman L, Lovelady CA. Effects of energy restriction and exercise on bone mineral density during lactation. Med Sci Sports Exerc. 2012;44(8):1570–1579. PubMed ID: 22460469 doi:10.1249/MSS.0b013e318251d43e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Franklin BA. American College of Sports Medicine’s Guidelines for Exercise Testing and Prescription, 6th ed. Philadelphia, PA: Lipponcott Williams & Wilkins; 2000:60–86.

    • Search Google Scholar
    • Export Citation
  • 12.

    Weber JL, Reid PM, Greaves KA, et al. Validity of self-reported energy intake in lean and obese young women, using two nutrient databases, compared with total energy expenditure assessed by doubly labeled water. Eur J Clin Nutr. 2001;55(11):940–950. PubMed ID: 11641742 doi:10.1038/sj.ejcn.1601249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Moshfegh AJ, Rhodes DG, Baer DJ, et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr. 2008;88(2):324–332. PubMed ID: 18689367 doi:10.1093/ajcn/88.2.324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Blanton CA, Moshfegh AJ, Baer DJ, Kretsch MJ. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J Nutr. 2006;136(10):2594–2599. PubMed ID: 16988132 doi:10.1093/jn/136.10.2594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Asomaning K, Bertone-Johnson ER, Nasca PC, Hooven F, Pekow PS. The association between body mass index and osteoporosis in patients referred for a bone mineral density examination. J Womens Health. 2006;15(9):1028–1034. PubMed ID: 17125421 doi:10.1089/jwh.2006.15.1028

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Little KD, Clapp JF. Self-selected recreational exercise has no impact on early postpartum lactation-induced bone loss. Med Sci Sports Exerc. 1998;30(6):831–836. PubMed ID: 9624639

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Drinkwater BL, Chesnut CH. Bone density changes during pregnancy and lactation in active women: a longitudinal study. Bone Miner. 1991;14(2):153–160. PubMed ID: 1912763 doi:10.1016/0169-6009(91)90092-E

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kalkwarf HJ, Specker BL, Ho M. Effects of calcium supplementation on calcium homeostasis and bone turnover in lactating women. J Clin Endocrinol Metab. 1999;84(2):464–470. PubMed ID: 10022402

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sowers M, Corton G, Shapiro B, et al. Changes in bone density with lactation. JAMA. 1993;269(24):3130–3135. PubMed ID: 8505816 doi:10.1001/jama.1993.03500240074029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Polatti FM, Capuzzo EM, Viazzo FM, Colleoni RM, Klersy CM. Bone mineral changes during and after lactation. Obstet Gynecol. 1999;94(1):52–56. PubMed D: 10389717

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Moller UK, vio Streym S, Mosekilde L, Rejnmark L. Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study. Osteoporos Int. 2012;23(4):1213–1223. PubMed ID: 21607805 doi:10.1007/s00198-011-1654-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kalkwarf HJ, Specker BL, Bianchi DC, Ranz J, Ho M. The effect of calcium supplementation on bone density during lactation and after weaning. N Engl J Med. 1997;337(8):523–528. PubMed ID: 9262495 doi:10.1056/NEJM199708213370803

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Institute of Medicine. Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academy Press, 2010.

    • Search Google Scholar
    • Export Citation
  • 24.

    Basile LA, Taylor SN, Wagner CL, Horst RL, Hollis BW. The effect of high-dose vitamin D supplementation on serum vitamin D levels and milk calcium concentration in lactating women and their infants. Breastfeed Med. 2006;1(1):27–35. PubMed ID: 17661558 doi:10.1089/bfm.2006.1.27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    O’Brien KO, Donnangelo CM, Ritchie L, Gildengorins G, Abrams S, King JC. Serum 1, 25-dihydroxyvitamin D and calcium intake affect rates of bone calcium deposition during pregnancy and the early postpartum period. Am J Clin Nutr. 2012;96:64–72. PubMed ID: 22648718 doi:10.3945/ajcn.111.029231

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hollis BW, Wagner CL, Howard CR, et al. Maternal versus infant vitamin D supplementation during lactation: a randomized controlled trial. Pediatrics. 2015;136(4):625–634. PubMed ID: 26416936 doi:10.1542/peds.2015-1669

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 144 144 23
Full Text Views 12 12 4
PDF Downloads 4 4 3