Cost-Effectiveness of Improvements to the Built Environment Intended to Increase Physical Activity

in Journal of Physical Activity and Health

Click name to view affiliation

Gregory Knell
Search for other papers by Gregory Knell in
Current site
Google Scholar
PubMed
Close
,
Henry S. Brown
Search for other papers by Henry S. Brown in
Current site
Google Scholar
PubMed
Close
,
Kelley P. Gabriel
Search for other papers by Kelley P. Gabriel in
Current site
Google Scholar
PubMed
Close
,
Casey P. Durand
Search for other papers by Casey P. Durand in
Current site
Google Scholar
PubMed
Close
,
Kerem Shuval
Search for other papers by Kerem Shuval in
Current site
Google Scholar
PubMed
Close
,
Deborah Salvo
Search for other papers by Deborah Salvo in
Current site
Google Scholar
PubMed
Close
, and
Harold W. Kohl III
Search for other papers by Harold W. Kohl III in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Improving sidewalks may encourage physical activity by providing safe, defined, and connected walking spaces. However, it is unknown if reduced health care expenditures assumed by increased physical activity offset the investment for sidewalk improvements. Methods: This cost-effectiveness analysis of sidewalk improvements in Houston, TX, was among adults enrolled in the Houston Travel-Related Activity in Neighborhoods Study, 2013–2017 . The 1-year change in physical activity was measured using self-report (n = 430) and accelerometry (n = 228) and expressed in metabolic equivalent (MET) hours per year (MET·h·y−1). Cost-effectiveness ratios were calculated by comparing annualized sidewalk improvement costs (per person) with 1-year changes in physical activity. Results: The estimated cost-effectiveness ratio were $0.01 and −$0.46 per MET·h·y−1 for self-reported and accelerometer-derived physical activity, respectively. The cost-effectiveness benchmark was $0.18 (95% confidence interval, $0.06–$0.43) per MET·h·y−1 gained based on the volume of physical activity necessary to avoid health care costs. Conclusions: Improving sidewalks was cost-effective based on self-reported physical activity, but not cost-effective based on accelerometry. Study findings suggest that improving sidewalks may not be a sufficient catalyst for changing total physical activity; however, other benefits of making sidewalks more walkable should be considered when deciding to invest in sidewalk improvements.

Knell and Durand are with the Department of Health Promotion & Behavioral Sciences, The University of Texas Health Science Center (UTHealth) at Houston School of Public Health, Houston, TX, USA. Knell, Brown, Gabriel, Durand, Salvo, and Kohl are with Michael & Susan Dell Center for Healthy Living, The University of Texas Health Science Center (UTHealth) at Houston School of Public Health, Austin, TX, USA. Brown is also with the Department of Management, Policy, and Community Health, The University of Texas Health Science Center (UTHealth) at Houston School of Public Health, Austin, TX, USA. Gabriel, Salvo, and Kohl are with the Department of Epidemiology, Human Genetics & Environmental Sciences, The University of Texas Health Science Center (UTHealth) at Houston School of Public Health, Austin, TX, USA. Gabriel is also with the Department of Women’s Health, Dell Medical School, The University of Texas at Austin, Austin, TX, USA. Shuval is with the Department of Intramural Research, Economic and Health Policy Research Program, American Cancer Society, Atlanta, GA, USA and also with the Department of Epidemiology, School of Public Health, University of Haifa, Haifa, Israel. Kohl is also with the Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA.

Knell (Gregory.Knell@uth.tmc.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    McCormack GR, Shiell A. In search of causality: a systematic review of the relationship between the built environment and physical activity among adults. Int J Behav Nutr Phys Act. 2011;8(1):125. doi:10.1186/1479-5868-8-125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Saelens BE, Handy SL. Built environment correlates of walking: a review. Med Sci Sports Exerc. 2008;40(suppl 7):550566. doi:10.1249/MSS.0b013e31817c67a4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Sallis JF, Glanz K. The role of built environments in physical activity, eating, and obesity in childhood. Future Child. 2006;16(1):89108. PubMed ID: 16532660 doi:10.1353/foc.2006.0009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Laine J, Kuvaja-Köllner V, Pietilä E, Koivuneva M, Valtonen H, Kankaanpää E. Cost-effectiveness of population-level physical activity interventions: a systematic review. Am J Health Promot. 2014;29(2):7180. PubMed ID: 25361461 doi:10.4278/ajhp.131210-LIT-622

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Wu S, Cohen D, Shi Y, Pearson M, Sturm R. Economic analysis of physical activity interventions. Am J Prev Med. 2011;40(2):149158. PubMed ID: 21238863 doi:10.1016/j.amepre.2010.10.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Abildso CG, Zizzi SJ, Selin S, Gordon PM. Assessing the cost effectiveness of a community rail-trail in achieving physical activity gains. J Park Recreat Admi. 2012;30(2):102113.

    • Search Google Scholar
    • Export Citation
  • 7.

    Cohen DA, Marsh T, Williamson S, Golinelli D, McKenzie TL. Impact and cost-effectiveness of family fitness zones: a natural experiment in urban public parks. Health Place. 2012;18(1):3945. PubMed ID: 22243905 doi:10.1016/j.healthplace.2011.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wang G, Macera CA, Scudder-Soucie B, Schmid T, Pratt M, Buchner D. Cost effectiveness of a bicycle/pedestrian trail development in health promotion. Prev Med. 2004;38(2):237242. PubMed ID: 14715217 doi:10.1016/j.ypmed.2003.10.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Guo JY, Gandavarapu S. An economic evaluation of health-promotive built environment changes. Prev Med. 2010;50:S44S49. PubMed ID: 19840817 doi:10.1016/j.ypmed.2009.08.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sælensminde K. Cost–benefit analyses of walking and cycling track networks taking into account insecurity, health effects and external costs of motorized traffic. Transp Res Part A Policy Pract. 2004;38(8):593606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Stokes RJ, MacDonald J, Ridgeway G. Estimating the effects of light rail transit on health care costs. Health Place. 2008;14(1):4558. PubMed ID: 17543570 doi:10.1016/j.healthplace.2007.04.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dallat MA, Soerjomataram I, Hunter RF, Tully MA, Cairns KJ, Kee F. Urban greenways have the potential to increase physical activity levels cost-effectively. Eur J Public Health. 2014;24(2):190195. PubMed ID: 23531527 doi:10.1093/eurpub/ckt035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Beale SJ, Bending MW, Trueman P, Naidoo B. Should we invest in environmental interventions to encourage physical activity in England? An economic appraisal. Eur J Public Health. 2012;22(6):869873. PubMed ID: 23132876 doi:10.1093/eurpub/ckr151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cohen DA, Golinelli D, Williamson S, Sehgal A, Marsh T, McKenzie TL. Effects of park improvements on park use and physical activity: policy and programming implications. Am J Prev Med. 2009;37(6):475480. PubMed ID: 19944911 doi:10.1016/j.amepre.2009.07.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Deenihan G, Caulfield B. Estimating the health economic benefits of cycling. J Transp Health. 2014;1(2):141149. doi:10.1016/j.jth.2014.02.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gotschi T. Costs and benefits of bicycling investments in Portland, Oregon. J Phys Act Health. 2011;8(s1):S49S58. doi:10.1123/jpah.8.s1.s49

  • 17.

    Macmillan A, Connor J, Witten K, Kearns R, Rees D, Woodward A. The societal costs and benefits of commuter bicycling: simulating the effects of specific policies using system dynamics modeling. Environ Health Perspect. 2014;122(4):335344. PubMed ID: 24496244 doi:10.1289/ehp.1307250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Schweizer J, Rupi F. Performance evaluation of extreme bicycle scenarios. Procedia Soc Behav Sci. 2014;111:508517. doi:10.1016/j.sbspro.2014.01.084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    U.S. Census Bureau. QuickFacts Houston city, Texas. 2017. https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml. Accessed October 30, 2018.

    • Search Google Scholar
    • Export Citation
  • 20.

    Trepanier JC, Tucker CS. Event-based climatology of tropical cyclone rainfall in Houston, Texas and Miami, Florida. Atmosphere. 2018;9(5):170. doi:10.3390/atmos9050170

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Durand CP, Oluyomi AO, Gabriel KP, et al. The effect of light rail transit on physical activity: design and methods of the travel-related activity in neighborhoods study. Front Public Health. 2016;4:103. PubMed ID: 27376051 doi:10.3389/fpubh.2016.00103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Choi L, Ward SC, Schnelle JF, Buchowski MS. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc. 2012;44(10):20092016. PubMed ID: 22525772 doi:10.1249/MSS.0b013e318258cb36

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):11491160. PubMed ID: 19897823 doi:10.3758/BRM.41.4.1149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    City of Houston. COHGIS Open Data Portal. 2016. http://cohgis.mycity.opendata.arcgis.com/. Accessed March 17, 2017.

  • 25.

    Morency C, Trépanier M, Demers M. Walking to transit: an unexpected source of physical activity. Transp Policy. 2011;18(6):800806. doi:10.1016/j.tranpol.2011.03.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hoehner CM, Ramirez LK, Elliott MB, Handy SL, Brownson RC. Perceived and objective environmental measures and physical activity among urban adults. Am J Prev Med. 2005;28(2):105116. doi:10.1016/j.amepre.2004.10.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Shay E, Rodriguez DA, Cho G, Clifton KJ, Evenson KR. Comparing objective measures of environmental supports for pedestrian travel in adults. Int J Health Geogr. 2009;8(1):62. doi:10.1186/1476-072X-8-62

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gabriel KP, McClain JJ, Schmid KK, Storti KL, Ainsworth BE. Reliability and convergent validity of the past-week Modifiable Activity Questionnaire. Public Health Nutr. 2011;14(03):435442. doi:10.1017/S1368980010002612

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Kriska AM, Knowler WC, LaPorte RE, et al. Development of questionnaire to examine relationship of physical activity and diabetes in Pima Indians. Diabetes Care. 1990;13(4):401411. PubMed ID: 2318100 doi:10.2337/diacare.13.4.401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777781. PubMed ID: 9588623 doi:10.1097/00005768-199805000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cohen DA, Han B, Derose KP, Williamson S, Marsh T, McKenzie TL. Physical activity in parks: a randomized controlled trial using community engagement. Am J Prev Med. 2013;45(5):590597. PubMed ID: 24139772 doi:10.1016/j.amepre.2013.06.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Cohen DA, Marsh T, Williamson S, et al. The potential for pocket parks to increase physical activity. Am J Health Promot. 2014;28(suppl 3):S19S26. doi:10.4278/ajhp.130430-QUAN-213

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Barrett JL, Gortmaker SL, Long MW, et al. Cost effectiveness of an elementary school active physical education policy. Am J Prev Med. 2015;49(1):148159. PubMed ID: 26094235 doi:10.1016/j.amepre.2015.02.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Cohen DA, Han B, Isacoff J, et al. Impact of park renovations on park use and park-based physical activity. J Phys Act Health. 2015;12(2):289295. PubMed ID: 24956608 doi:10.1123/jpah.2013-0165

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Hankonen N, Heino MT, Araujo-Soares V, et al. ‘Let’s Move It’–a school-based multilevel intervention to increase physical activity and reduce sedentary behaviour among older adolescents in vocational secondary schools: a study protocol for a cluster-randomised trial. BMC Public Health. 2016;16(1):451. doi:10.1186/s12889-016-3094-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Sutherland R, Reeves P, Campbell E, et al. Cost effectiveness of a multi-component school-based physical activity intervention targeting adolescents: the ‘Physical Activity 4 Everyone’cluster randomized trial. Int J Behav Nutr Phys Act. 2016;13(1):94. doi:10.1186/s12966-016-0418-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Wang H, Li T, Siahpush M, Chen LW, Huberty J. Cost‐Effectiveness of Ready for Recess to Promote Physical Activity in Children. J Sch Health. 2017;87(4):278285. PubMed ID: 28260240 doi:10.1111/josh.12495

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    US Census Bureau. 5-year estimates of the block group data of the American Community Survey. 2007–2011. https://www.census.gov/geo/maps-data/data/tiger-data.html. Accessed April 3, 2017.

    • Search Google Scholar
    • Export Citation
  • 39.

    Vickers AJ, Altman DG. Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ. 2001;323(7321):11231124. PubMed ID: 11701584 doi:10.1136/bmj.323.7321.1123

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Van Dyck D, Cerin E, De Bourdeaudhuij I, et al. Moderating effects of age, gender and education on the associations of perceived neighborhood environment attributes with accelerometer-based physical activity: The IPEN adult study. Health Place. 2015;36:6573. PubMed ID: 26454247 doi:10.1016/j.healthplace.2015.09.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Ding D, Lawson KD, Kolbe-Alexander TL, et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. The Lancet. 2016;388(10051):13111324. doi:10.1016/S0140-6736(16)30383-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Robert CP. Monte Carlo Statistical Methods. 2nd ed. New York, NY: Springer; 2004.

  • 43.

    Centers for Medicare & Medicaid Services. National Healthcare Expenditures; Aggregate and Per Capita Amounts. Baltimore, MD: US Department of Health and Human Services; 2013.

    • Search Google Scholar
    • Export Citation
  • 44.

    Task Force on Community Preventive Services. Recommendations to increase physical activity in communities. Am J Prev Med. 2002;22(4):6772. doi:10.1016/S0749-3797(02)00433-6

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Glanz K, Rimer BK, Viswanath K, Lewis FM. Health behavior and health education: theory, research, and practice. 3rd ed. San Francisco, CA: John Wiley & Sons; 2008.

    • Search Google Scholar
    • Export Citation
  • 46.

    Loewenstein G, Brennan T, Volpp KG. Asymmetric paternalism to improve health behaviors. JAMA. 2007;298(20):24152417. PubMed ID: 18042920 doi:10.1001/jama.298.20.2415

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Shuval K, Leonard T, Drope J, et al. Physical activity counseling in primary care: insights from public health and behavioral economics. CA Cancer J Clin. 2017;67(3):233244.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Litman T. Economic value of walking. In: C Mulley, K Gebel, D Ding, eds. Walking. Bingley, UK: Emerald Publishing Limited; 2017:8198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Abbasi J. As walking movement grows, neighborhood walkability gains attention. JAMA. 2016;316(4):382383. PubMed ID: 27367440 doi:10.1001/jama.2016.7755

  • 50.

    Howe CA, Staudenmayer JW, Freedson PS. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis. Med Sci Sports Exerc. 2009;41(12):21992206. PubMed ID: 19915498 doi:10.1249/MSS.0b013e3181aa3a0e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Knell G, Durand CP, Shuval K, et al. If you build it, will they come? A quasi-experimental evaluation of sidewalk improvements and changes in physical activity. Transl J Am Coll Sports Med. 2018;9:6671.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3256 1568 31
Full Text Views 61 7 0
PDF Downloads 56 8 0