Water-Based Aerobic and Resistance Training as a Treatment to Improve the Lipid Profile of Women With Dyslipidemia: A Randomized Controlled Trial

in Journal of Physical Activity and Health

Click name to view affiliation

Rochelle R. Costa
Search for other papers by Rochelle R. Costa in
Current site
Google Scholar
PubMed
Close
,
Adriana C.K. Buttelli
Search for other papers by Adriana C.K. Buttelli in
Current site
Google Scholar
PubMed
Close
,
Leandro Coconcelli
Search for other papers by Leandro Coconcelli in
Current site
Google Scholar
PubMed
Close
,
Laura F. Pereira
Search for other papers by Laura F. Pereira in
Current site
Google Scholar
PubMed
Close
,
Alexandra F. Vieira
Search for other papers by Alexandra F. Vieira in
Current site
Google Scholar
PubMed
Close
,
Alex de O. Fagundes
Search for other papers by Alex de O. Fagundes in
Current site
Google Scholar
PubMed
Close
,
Juliano B. Farinha
Search for other papers by Juliano B. Farinha in
Current site
Google Scholar
PubMed
Close
,
Thais Reichert
Search for other papers by Thais Reichert in
Current site
Google Scholar
PubMed
Close
,
Ricardo Stein
Search for other papers by Ricardo Stein in
Current site
Google Scholar
PubMed
Close
, and
Luiz F.M. Kruel
Search for other papers by Luiz F.M. Kruel in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Regular exercise is recommended for the treatment of dyslipidemia. The aquatic environment presents some beneficial characteristics for patients suffering from dyslipidemia. However, it is unknown which modality promotes better results. This study aims to compare the effects of water-based aerobic training (WA) and water-based resistance training (WR) on lipid profile of dyslipidemic elderly women. Methods: Sixty-nine dyslipidemic elderly women participated in this 3-arm randomized controlled clinical trial with groups in parallel. The interventions were WA, WR, and control group, with 2 weekly sessions for 10 weeks. Total cholesterol (TC), triglycerides, low-density lipoprotein, high-density lipoprotein (HDL) levels, and TC/HDL ratio, were determined before and after interventions. Results: Intention-to-treat analysis showed that WA and WR participants obtained similar decreases in TC (−10.0% and −9.6%, respectively), triglycerides (−13.4% and −15.7%, respectively), low-density lipoprotein (−16.1% and −16.9%, respectively), TC/HDL (−16.9% and −23.4%, respectively) and increases in HDL (7.6% and 16.9%, respectively). The control group maintained their TC and low-density lipoprotein levels unchanged, whereas triglycerides and TC/HDL were increased (3.6% and 11.3%, respectively), and HDL decreases 4.8%. Conclusions: WA and WR improve similarly the lipid profile of dyslipidemic elderly women, representing interesting nonpharmacological tools in the treatment of dyslipidemia.

Costa, Buttelli, Coconcelli, Pereira, Vieira, Fagundes, Farinha, Reichert, and Kruel are with Exercise Research Laboratory, Physical Education School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. Stein is with the Department of Physiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.

Costa (rochelle.costa@ufrgs.br) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Gau GT, Wright RS. Pathophysiology, diagnosis, and management of dyslipidemia. Curr Probl Cardiol. 2006;31(7):445486. PubMed ID: 16824902 doi:10.1016/j.cpcardiol.2006.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Jellinger PS, Handelsman Y, Rosenblit PD, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for Management of Dyslipidemia and Prevention of Cardiovascular Disease. Endocr Pract. 2017;23(2):187. doi:10.4158/EP171764.APPGL

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Durstine JL, Grandjean PW, Davis PG, Ferguson MA, Alderson NL, DuBose KD. Blood lipid and lipoprotein adaptations to exercise: a quantitative analysis. Sports Med. 2001;31(15):10331062. PubMed ID: 11735685

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kelley GA, Kelley KS. Impact of progressive resistance training on lipids and lipoproteins in adults: a meta-analysis of randomized controlled trials. Prev Med. 2009;48(1):919. PubMed ID: 19013187 doi:10.1016/j.ypmed.2008.10.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Sarzynski MA, Burton J, Rankinen T, et al. The effects of exercise on the lipoprotein subclass profile: a meta-analysis of 10 interventions. Atherosclerosis. 2015;243(2):364372. PubMed ID: 26520888 doi:10.1016/j.atherosclerosis.2015.10.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Alberton CL, Tartaruga MP, Pinto SS, et al. Vertical ground reaction force during water exercises performed at different intensities. Int J Sports Med. 2013;34(10):881887. PubMed ID: 23549690 doi:10.1055/s-0032-1331757

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Pendergast DR, Lundgren CEG. The underwater environment: cardiopulmonary, thermal, and energetic demands. J Appl Physiol, 2009;106:276283. PubMed ID: 19036887 doi:10.1152/japplphysiol.90984.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Pendergast DR, Moon RE, Krasney JJ, Held HE, Zamparo P. Human physiology in an aquatic environment. Compr Physiol. 2015;5(4):17051750. PubMed ID: 26426465 doi:10.1002/cphy.c140018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Engeli S, Birkenfeld AL, Badin PM, et al. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. J Clin Invest. 2012;122(12):46754679. PubMed ID: 23114600

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Moro C, Smith SR. Natriuretic peptides: new players in energy homeostasis. Diabetes. 2009;58(12):27262728. PubMed ID: 19940236 doi:10.2337/db09-1335

  • 11.

    Takeshima N, Rogers ME, Watanabe E, et al. Water-based exercise improves health-related aspects of fitness in older women. Med Sci Sports Exerc. 2002;34(3):544551. PubMed ID: 11880822

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Volaklis KA, Spassis AT, Tokmakidis SP. Land versus water exercise in patients with coronary artery disease: effects on body composition, blood lipids, and physical fitness. Am Heart J. 2007;154(3):560.e1560.e6. doi:10.1016/j.ahj.2007.06.029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Costa RR, Pilla C, Buttelli ACK, et al. Water-based aerobic training successfully improves lipid profile of dyslipidemic women: a randomized controlled trial. Res Q Exerc Sport. 2018;89(2):173182. PubMed ID: 29578858 doi:10.1080/02701367.2018.1441485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kasprzak Z, Pilaczynska-Szczesniak L. Effects of regular physical exercises in the water on the metabolic profile of women with abdominal obesity. J Hum Kinet. 2014;41:7179. doi:10.2478/hukin-2014-0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499502. PubMed ID: 4337382

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Alberton CL, Kanitz AC, Pinto SS, et al. Determining the anaerobic threshold in water aerobic exercises: a comparison between the heart rate deflection point and the ventilatory method. J Sports Med Phys Fitness. 2013;53(4):358367. PubMed ID: 23828283

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Parto P, Lavie CJ, Swift D, Sui X. The role of cardiorespiratory fitness on plasma lipid levels. Expert Rev Cardiovasc Ther. 2015;13(11):11771183. doi:10.1586/14779072.2015.1092384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ahmad Z. Statin intolerance. Am J Cardiol. 2014;113:17651771. PubMed ID: 24792743 doi:10.1016/j.amjcard.2014.02.033

  • 19.

    Costa RR, Kanitz AC, Reichert T, et al. Water-based aerobic training improves strength parameters and cardiorespiratory outcomes in elderly women. Exp Gerontol. 2018;108:231239. PubMed ID: 29730330 doi:10.1016/j.exger.2018.04.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York, NY: Lawrence Erlbaum Associates; 1988.

  • 21.

    Nuttamonwarakul A, Amatyakul S, Suksom D. Twelve weeks of aqua-aerobic exercise improve health-related physical fitness and glycemic control in elderly patients with type 2 diabetes. J Exerc Physiol. 2012;15(2):6471.

    • Search Google Scholar
    • Export Citation
  • 22.

    Graham I, Cooney MT, Bradley D, Dudina A, Reiner Z. Dyslipidemias in the prevention of cardiovascular disease: risks and causality. Curr Cardiol Rep. 2012;14(6):709720. doi:10.1007/s11886-012-0313-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Leon AS, Sanchez OA. Response of blood lipids to exercise training alone or combined with dietary intervention. Med Sci Sports Exerc. 2001;33(6):502515.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Yoo YK, Kim SK, Song MS. Effects of muscular and aqua aerobic combined exercise on metabolic indices in elderly women with metabolic syndrome. J Exerc Nutr Biochem. 2013;17(4):133141. doi:10.5717/jenb.2013.17.4.133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    März W, Kleber ME, Scharnagl H, et al. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol. 2017;106(9):663675. doi:10.1007/s00392-017-1106-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Millán J, Pintó X, Muñoz A, et al. Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention. Vasc Health Risk Manag. 2009;5:757765. doi:10.2147/VHRM.S6269

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Castelli WP, Abbott RD, McNamara PM. Summary estimates of cholesterol used to predict coronary heart disease. Circulation. 1983;67(4):730734. PubMed ID: 6825228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Colado JC, Triplett NT, Tella V, Saucedo P, Abellan J. Effects of aquatic resistance training on health and fitness in postmenopausal women. Eur J App Physiol. 2009;106(1):113122. doi:10.1007/s00421-009-0996-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Taylor FC, Huffman M, Ebrahim S. Statin therapy for primary prevention of cardiovascular disease. JAMA. 2013;310(22):24512452. PubMed ID: 24276813 doi:10.1001/jama.2013.281348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bishop BM. Systematic review of CETP inhibitors for increasing high-density lipoprotein cholesterol. Am J Ther. 2015;22(2):147158. doi:10.1097/MJT.0b013e31828b8463

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ebenbichler CF, Laimer M, Kaser S, et al. Relationship between cholesteryl ester transfer protein and atherogenic lipoprotein profile in morbidly obese women. Arterioscler Thromb Vasc Biol. 2002;22(9):14651469. PubMed ID: 12231567

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Deeb SS, Zambon A, Carr MC, Ayyobi AF, Brunzell JD. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. J Lipid Res. 2003;44(7):12791286. PubMed ID: 12639974 doi:10.1194/jlr.R200017-JLR200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Pump B, Shiraishi M, Gabrielsen A, Bie P, Christensen NJ, Norsk P. Cardiovascular effects of static carotid baroreceptor stimulation during water immersion in humans. Am J Physiol Heart Circ Physiol. 2001;280(6):H2607H2615. PubMed ID: 11356616

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gabrielsen A, Pump B, Bie P, Christensen NJ, Warberg J, Norsk P. Atrial distension, haemodilution, and acute control of renin release during water immersion in humans. Acta Physiol Scand. 2002;174(2):9199. PubMed ID: 11860370 doi:10.1046/j.1365-201X.2002.00932.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Schou M, Gabrielsen A, Bruun NE, et al. Angiotensin II attenuates the natriuresis of water immersion in humans. Am J Physiol Regul Integr Comp Physiol. 2002;283(1):R187R196. PubMed ID: 12069945 doi:10.1152/ajpregu.00536.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Moro C, Pillard F, De Glisezinski I, et al. Training enhances ANP lipid-mobilizing action in adipose tissue of overweight men. Med Sci Sports Exerc. 2005;37(7):11261132. PubMed ID: 16015128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Shiraishi M, Schou M, Gybel M, Christensen NJ, Norsk P. Comparison of acute cardiovascular responses to water immersion and head-down tilt in humans. J Appl Physiol. 2002;92(1):264268. PubMed ID: 11744669

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Delevatti RS, Kanitz AC, Alberton CL, et al. Glucose control can be similarly improved after aquatic or dry-land aerobic training in patients with type 2 diabetes: a randomized clinical trial. J Sci Med Sport. 2016;19(8):688693. PubMed ID: 26777722 doi:10.1016/j.jsams.2015.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gerbes AL, Arendt RM, Schnizer W. Regulation of atrial natriuretic factor release in man: effect of water immersion. Klin Wochenschr. 1986;64(14):666667.

  • 40.

    Sheldahl LM, Tristani FE, Connelly TP, Levandoski SG, Skelton MM, Cowley AWJ. Fluid-regulating hormones during exercise when central blood volume is increased by water immersion. Am J Physiol. 1992;262(5):R779R785.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Nagashima K, Nose H, Yoshida T, et al. Relationship between atrial natriuretic peptide and plasma volume during graded exercise with water immersion. J Appl Physiol. 1995;78(1):217224. PubMed ID: 7713815

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Stocks JM, Patterson MJ, Hyde DE, Jenkins AB, Mittleman KD, Taylor NAS. Effects of immersion water temperature on whole-body fluid distribution in humans. Acta Physiol Scand. 2004;182(1):310. PubMed ID: 15329051 doi:10.1111/j.1365-201X.2004.01302.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Wiesner S, Birkenfeld AL, Engeli S, et al. Neurohumoral and metabolic response to exercise in water. Horm Metab Res. 2010;42(5):334339. PubMed ID: 20178064 doi:10.1055/s-0030-1248250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Karner-Rezek K, Knechtle B, Fenzl M, Gredig J, Rosemann T. Does continuous endurance exercise in water elicit a higher release of ANP and BNP and a higher plasma concentration of FFAs in pre-obese and obese men than high intensity intermittent endurance exercise?—study protocol for a randomized controlled trial. Trials. 2013;14:328334. PubMed ID: 24112444 doi:10.1186/1745-6215-14-328

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3323 1787 16
Full Text Views 18 6 0
PDF Downloads 31 10 0