Beneficial Effects of Acute Exercise on Executive Function in Adolescents

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: Evidence supports that a single session of exercise has benefits for cognitive performance following exercise. Although the vast majority of research has been conducted with young adults, very few studies to date have tested these effects in adolescents (high school aged students). As executive function (EF) develops through late adolescence and into young adulthood, it is important to assess the extent to which acute exercise benefits EF in adolescents. The primary purpose of this study was to assess the effect of moderate-intensity acute exercise on subsequent EF performance in this population. Methods: Healthy high school students (N = 22; age: 15.90 [0.29] y) volunteered to participate in the study. Using a within-subjects design with order of conditions randomized and counterbalanced, participants performed the Stroop Test, the Symbol Digit Modalities Test, and the Tower of London Test following control and following exercise with sessions performed on different days. Results: Exercise resulted in significant benefits for Stroop Color, Stroop Color-Word tests, Symbol Digit Modalities Test, Tower of London total moves, and Tower of London total excess moves. Conclusions: These results provide an important extension to the literature by confirming that 20 minutes of moderate-intensity exercise benefits EF performance in high school students.

Park is with the Department of Physical Education, Chungnam National University, Daejeon, South Korea. Etnier is with the Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, USA.

Park (pposuk518@gmail.com) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Chang YKLabban JDGapin JIEtnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012;1453:87101. PubMed ID: 22480735 doi:10.1016/j.brainres.2012.02.068

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Etnier JLSalazar WLanders DMPetruzzello SJHan MNowell P. The influence of physical fitness and exercise upon cognitive functioning: a meta-analysis. J Sport Exerc Psychol. 1997;19(3):249277. doi:10.1123/jsep.19.3.249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lambourne KTomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res. 2010;1341:1224. PubMed ID: 20381468 doi:10.1016/j.brainres.2010.03.091

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Baddeley AD. Working Memory (Oxfoid Psychology Series No. 11). New York, NY: Oxford University Press; 1986.

  • 5.

    Verburgh LKönigs MScherder EJOosterlaan J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br J Sports Med. 2014;48(12):973979. PubMed ID: 23467962 doi:10.1136/bjsports-2012-091441

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ludyga SGerber MBrand SHolsboer-Trachsler EPühse U. Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiology. 2016;53(11):16111626. PubMed ID: 27556572 doi:10.1111/psyp.12736

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Budde HVoelcker-Rehage CPietrabyk-Kendziorra SRibeiro PTidow G. Acute coordinative exercise improves attentional performance in adolescents. Neurosci Lett. 2008;441(2):219223. PubMed ID: 18602754 doi:10.1016/j.neulet.2008.06.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Stroth SKubesch SDieterle KRuchsow MHeim RKiefer M. Physical fitness, but not acute exercise modulates event-related potential indices for executive control in healthy adolescents. Brain Res. 2009;1269:114124. PubMed ID: 19285042 doi:10.1016/j.brainres.2009.02.073

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hogan MKiefer MKubesch SCollins PKilmartin LBrosnan M. The interactive effects of physical fitness and acute aerobic exercise on electrophysiological coherence and cognitive performance in adolescents. Exp Brain Res. 2013;229(1):8596. PubMed ID: 23743717 doi:10.1007/s00221-013-3595-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Soga KShishido TNagatomi R. Executive function during and after acute moderate aerobic exercise in adolescents. Psychol Sport Exerc. 2015;16:717. doi:10.1016/j.psychsport.2014.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Esteban-Cornejo ITejero-Gonzalez CMSallis JFVeiga OL. Physical activity and cognition in adolescents: a systematic review. J Sci Med Sport. 2015;18(5):534539. PubMed ID: 25108657 doi:10.1016/j.jsams.2014.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Haapala E. Physical activity, academic performance and cognition in children and adolescents. A systematic review. Balt J Health Phys Act. 2012;4(1):53. doi:10.2478/v10131-012-0007-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Budde HVoelcker-Rehage CPietrassyk-Kendziorra SMachado SRibeiro PArafat AM. Steroid hormones in the saliva of adolescents after different exercise intensities and their influence on working memory in a school setting. Psychoneuroendocrinology. 2010;35(3):382391. PubMed ID: 19716238 doi:10.1016/j.psyneuen.2009.07.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Cooper SBBandelow SNute MLet al. Sprint-based exercise and cognitive function in adolescents. Prev Med Rep. 2016;4:155161. PubMed ID: 27413677 doi:10.1016/j.pmedr.2016.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Steinberg L. A social neuroscience perspective on adolescent risk-taking. Dev Rev. 2008;28(1):78106. PubMed ID: 18509515 doi:10.1016/j.dr.2007.08.002

  • 16.

    Casey BJGetz SGalvan A. The adolescent brain. Dev Rev. 2008;28(1):6277. PubMed ID: 18688292 doi:10.1016/j.dr.2007.08.003

  • 17.

    Best JRMiller PHJones LL. Executive functions after age 5: changes and correlates. Dev Rev. 2009;29(3):180200. PubMed ID: 20161467 doi:10.1016/j.dr.2009.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Faul FErdfelder ELang AGBuchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed ID: 17695343 doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    American College of Sports MedicineThompson WRGordon NFPescatello LS. ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins; 2010.

    • Search Google Scholar
    • Export Citation
  • 20.

    Borg G. Borg’s Perceived Exertion and Pain ScalesChampaign, IL: Human kinetics; 1998.

  • 21.

    Smith A. Symbol Digit Modalities Test (SDMT) Manual (Revised). Los Angel, CA: Western Psychological Services; 1982.

  • 22.

    Hinton-Bayre AGeffen G. Comparability, reliability, and practice effects on alternate forms of the Digit Symbol Substitution and Symbol Digit Modalities tests. Psychol Assess. 2005;17(2):237241. PubMed ID: 16029111 doi:10.1037/1040-3590.17.2.237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;18(6):643662. doi:10.1037/h0054651

  • 24.

    Van der Elst WVan Boxtel MPVan Breukelen GJJolles J. The Stroop color-word test: influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment. 2006;13(1):6279. PubMed ID: 16443719 doi:10.1177/1073191105283427

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Shallice T. Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci. 1982;298(1089):199209. PubMed ID: 6125971 doi:10.1098/rstb.1982.0082

  • 26.

    Chang YKTsai CLHung TMSo ECChen FTEtnier JL. Effects of acute exercise on executive function: a study with a Tower of London Task. J Sport Exerc Psychol. 2011;33(6):847865. PubMed ID: 22262708 doi:10.1123/jsep.33.6.847

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Culbertson WCZillmer EA. The Tower of London DX: a standardized approach to assessing executive functioning in children. Arch Clin Neuropsychol. 1998;13(3):285301. PubMed ID: 14590643 doi:10.1093/arclin/13.3.285

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Mueller STPiper BJ. The psychology experiment building language (PEBL) and PEBL test battery. J Neurosci Methods. 2014;222:250259. PubMed ID: 24269254 doi:10.1016/j.jneumeth.2013.10.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hills MArmitage P. The two-period cross-over clinical trial. Br J Clin Pharmacol. 1979;8(1):720. PubMed ID: 552299 doi:10.1111/j.1365-2125.1979.tb05903.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sibley BAEtnier JLLe Masurier GC. Effects of an acute bout of exercise on cognitive aspects of Stroop performance. J Sport Exerc Psychol. 2006;28(3):285299. doi:10.1123/jsep.28.3.285

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hillman CHPontifex MBRaine LBCastelli DMHall EEKramer AF. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience. 2009;159(3):10441054. PubMed ID: 19356688 doi:10.1016/j.neuroscience.2009.01.057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hillman CHSnook EMJerome GJ. Acute cardiovascular exercise and executive control function. Int J Psychophysiol. 2003;48(3):307314. PubMed ID: 12798990 doi:10.1016/S0167-8760(03)00080-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    O’Leary KCPontifex MBScudder MRBrown MLHillman CH. The effects of single bouts of aerobic exercise, exergaming, and videogame play on cognitive control. Clin Neurophysiol. 2011;122(8):15181525. doi:10.1016/j.clinph.2011.01.049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pontifex MBParks ACHenning DAKamijo K. Single bouts of exercise selectively sustain attentional processes. Psychophysiology. 2015;52(5):618625. PubMed ID: 25523887 doi:10.1111/psyp.12395

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Knaepen KGoekint MHeyman EMMeeusen R. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Med. 2010;40(9):765801. PubMed ID: 20726622 doi:10.2165/11534530-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Skriver KRoig MLundbye-Jensen Jet al. Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem. 2014;116:4658. PubMed ID: 25128877 doi:10.1016/j.nlm.2014.08.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Winter BBreitenstein CMooren FCet al. High impact running improves learning. Neurobiol Learn Mem. 2007;87(4):597609. PubMed ID: 17185007 doi:10.1016/j.nlm.2006.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Kamijo KNishihira YHatta Aet al. Differential influences of exercise intensity on information processing in the central nervous system. Eur J Appl Physiol. 2004;92(3):305311. PubMed ID: 15083372 doi:10.1007/s00421-004-1097-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Burgeson CRWechsler HBrener NDYoung JCSpain CG. Physical education and activity: results from the School Health Policies and Programs Study 2000. J Sch Health. 2001;71(7):279293. PubMed ID: 11586871 doi:10.1111/j.1746-1561.2001.tb03505.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Johnston LDDelva JO’Malley PM. Sports participation and physical education in American secondary schools: current levels and racial/ethnic and socioeconomic disparities. Am J Prev Med. 2007;33(4):195208. doi:10.1016/j.amepre.2007.07.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Best JRMiller PHNaglieri JA. Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn Individ Differ. 2011;21(4):327336. PubMed ID: 21845021 doi:10.1016/j.lindif.2011.01.007

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 192 192 30
Full Text Views 16 16 7
PDF Downloads 9 9 5
Altmetric Badge
PubMed
Google Scholar
Cited By