Comparing Cognitive Control Performance During Seated Rest and Self-Paced Cycling on a Desk Bike in Preadolescent Children

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Although active workstations, such as desk bikes, have proven to be beneficial for health, there is limited information regarding their effects on children’s acute cognitive performance during self-paced exercise. Methods: This study used a within-subjects, fully counterbalanced design with a sample of 38 preadolescent children (mean age = 12.50 y, SD = 0.62; 43% male), who performed cognitive tests while being seated or while cycling for 45 minutes with a 7-day interval. Effects of using a desk bike were evaluated on cognitive control: verbal and visuospatial working memory capacities were tested, and inhibition was assessed using a modified flanker task. In addition, subjective task experience was explored using self-report measures. Results: Cognitive control performance was not degraded but also not improved with the short-term use of desk bikes. Because of the null effects, there is no direction and magnitude of the outcomes to discuss. Conclusions: These findings suggest that schools can successfully implement desk bikes to increase physical activity and reduce sedentary time among children without compromising cognitive control processes necessary for academic achievement.

The authors are with the Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands. Loyens is also with University College Roosevelt, Utrecht University, Middelburg, The Netherlands. Paas is also with Early Start/School of Education, University of Wollongong, NSW, Australia.

Ruiter (ruiter@fsw.eur.nl) is corresponding author.
  • 1.

    Colley R, Garriguet D, Janssen I, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian Health Measures Survey. BMC Public Health. 2013;13(1):200. doi:10.1186/1471-2458-13-200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Marshall SJ, Biddle SJ, Gorely T, Cameron N, Murdey I. Relationships between media use, body fatness and physical activity in children and youth: a meta-analysis. Int J Obes Relat Metab Disord. 2004;28:12381246. PubMed ID: 15314635 doi:10.1038/sj.ijo.0802706

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mitchell J, Byun W. Sedentary behavior and health outcomes in children and adolescents. Am J Lifestyle Med. 2013;8(3):173199. doi:10.1177/1559827613498700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Tremblay MS, LeBlanc AG, Kho ME, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8(1):98. doi:10.1186/1479-5868-8-98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Biddle S, Pearson N, Ross G, Braithwaite R. Tracking of sedentary behaviours of young people: a systematic review. Prev Med. 2010;51(5):345351. PubMed ID: 20682330 doi:10.1016/j.ypmed.2010.07.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Telama R, Yang X, Leskinen E, et al. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sports Exerc. 2014;46(5):955962. PubMed ID: 24121247 doi:10.1249/MSS.0000000000000181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Salmon J. Novel strategies to promote children’s physical activities and reduce sedentary behavior. J Phys Act Health. 2010;7(suppl 3):299306. doi:10.1123/jpah.7.s3.s299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Abott RA, Straker LM, Mathiassen SE. Patterning of children’s sedentary time at and away from school. Obesity. 2013;21(1):E131E133. doi:10.1002/oby.20127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Institute of Medicine. Educating the Student Body: Taking Physical Activity and Physical Education to School. Washington, DC: The National Academies Press; 2013.

    • Search Google Scholar
    • Export Citation
  • 10.

    Centers for Disease Control and Prevention. The Association Between School-Based Physical Activity, Including Physical Education, and Academic Performance. Atlanta, GA: US Department of Health and Human Services; 2010.

    • Search Google Scholar
    • Export Citation
  • 11.

    Sherry A, Pearson N, Clemes S. The effects of standing desks within the school classroom: a systematic review. Prev Med Rep. 2016;3:338347. PubMed ID: 27419034 doi:10.1016/j.pmedr.2016.03.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Stamatakis E, Gale J, Bauman A, Ekelund U, Hamer M, Ding D. Sitting time, physical activity, and risk of mortality in adults. J Am Coll Cardiol. 2019;73:20622072.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Alkhajah T, Reeves M, Eakin E, Winkler E, Owen J, Healy G. Sit-stand workstations: a pilot intervention to reduce office sitting time. Am J Prev Med. 2012;43:298303. PubMed ID: 22898123 doi:10.1016/j.amepre.2012.05.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Pronk NP, Katz AS, Lowry M, Payfer JR. Reducing occupational sitting time and improving worker health: the Take-a-Stand Project, 2011. Prev Chronic Dis. 2012;9:E154. PubMed ID: 23057991 doi:10.5888/pcd9.110323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cox R, Guth J, Siekemeyer L, Kellems B, Brehm S, Ohlinger C. Metabolic cost and speech quality while using an active workstation. J Phys Act Health. 2011;8(3):332339. PubMed ID: 21487132 doi:10.1123/jpah.8.3.332

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Reiff C, Marlatt K, Dengel DR. Difference in caloric expenditure in sitting versus standing desks. J Phys Act Health. 2012;9(7):10091011. PubMed ID: 22971879 doi:10.1123/jpah.9.7.1009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    John D, Thompson D, Raynor H, Bielak K, Rider B, Bassett D. Treadmill workstations: a worksite physical activity intervention in overweight and obese office workers. J Phys Act Health. 2011;8(8):10341043. PubMed ID: 22039122 doi:10.1123/jpah.8.8.1034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Best J. Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev Rev. 2010;30(4):331351. PubMed ID: 21818169 doi:10.1016/j.dr.2010.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Donnelly J, Hillman C, Castelli D, et al. Physical activity, fitness, cognitive function, and academic achievement in children: a systematic review. Med Sci Sports Exerc. 2016;48:11971222. PubMed ID: 27182986 doi:10.1249/MSS.0000000000000901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    McMorris T, Sproule J, Turner A, Hale B. Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiol Behav. 2011;102(3–4):421428. doi:10.1016/j.physbeh.2010.12.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Diamond A, Ling D. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev Cogn Neurosci. 2015;18:3448. PubMed ID: 26749076 doi:10.1016/j.dcn.2015.11.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Castelli D, Hillman C, Buck S, Erwin H. Physical fitness and academic achievement in third- and fifth-grade students. J Sport Exerc Psychol. 2007;29(2):239252. PubMed ID: 17568069 doi:10.1123/jsep.29.2.239

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Chang Y, Labban J, Gapin J, Etnier J. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012;1453:87101. PubMed ID: 22480735 doi:10.1016/j.brainres.2012.02.068

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Diamond A. Executive functions. Annu Rev Psychol. 2013;64:135168. PubMed ID: 23020641 doi:10.1146/annurev-psych-113011-143750

  • 25.

    Ruiter M, Loyens S, Paas F. Watch your step children! Learning two-digit numbers through mirror-based observation of self-initiated body movements. Educ Psychol Rev. 2015;27(3):457474. doi:10.1007/s10648-015-9324-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Tomporowski P, Davis C, Miller P, Naglieri J. Exercise and children’s intelligence, cognition, and academic achievement. Educ Psychol Rev. 2007;20(2):111131. doi:10.1007/s10648-007-9057-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Best JR. Exergaming immediately enhances children’s executive function. Dev Psychol. 2012;48:15011510. PubMed ID: 22148945 doi:10.1037/a0026648

  • 28.

    Drollette E, Shishido T, Pontifex M, Hilmann C. Maintenance of cognitive control during and after walking in preadolescent children. Med Sci Sports Exerc. 2012;44(10):20172024. PubMed ID: 22525770 doi:10.1249/MSS.0b013e318258bcd5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hillman C, Pontifex M, Raine L, Castelli D, Hall E, Kramer A. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience. 2009;159(3):10441054. PubMed ID: 19356688 doi:10.1016/j.neuroscience.2009.01.057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bull R, Espy KA, Wiebe SA. Short-term memory, working memory, and executive functioning in preschoolers: longitudinal predictors of mathematical achievement at age 7 years. Dev Neuropsychol. 2008;33(3):205228. PubMed ID: 18473197 doi:10.1080/87565640801982312

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Diamond A, Lee K. Interventions shown to aid executive function development in children 4 to 12 years old. Science. 2011;333(6045):959964. PubMed ID: 21852486 doi:10.1126/science.1204529

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Blair C, Razza RP. Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Dev. 2007;78(2):647663. PubMed ID: 17381795 doi:10.1111/j.1467-8624.2007.01019.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kamijo K, Nishihira Y, Hatta A, et al. Changes in arousal level by differential exercise intensity. Clin Neurophysiol. 2004;115(12):26932698. doi:10.1016/j.clinph.2004.06.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Querido J, Sheel A. Regulation of cerebral blood flow during exercise. Sports Med. 2007;37(9):765782. PubMed ID: 17722948 doi:10.2165/00007256-200737090-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hillman C, Erickson K, Kramer A. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):5865. PubMed ID: 18094706 doi:10.1038/nrn2298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Miyake A, Friedman N, Emerson M, Witzki A, Howerter A, Wager T. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41(1):49100. PubMed ID: 10945922 doi:10.1006/cogp.1999.0734

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Davidson M, Amso D, Anderson L, Diamond A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia. 2006;44(11):20372078. PubMed ID: 16580701 doi:10.1016/j.neuropsychologia.2006.02.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Kane M, Engle R. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon Bull Rev. 2002;9(4):637671. PubMed ID: 12613671 doi:10.3758/BF03196323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Hillman CH, Snook EM, Jerome GJ. Acute cardiovascular exercise and executive control function. Int J Psychophysiol. 2003;48:307314. PubMed ID: 12798990 doi:10.1016/S0167-8760(03)00080-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Kamijo K, Nishihira Y, Higashiura T, Kuroiwa K. The interactive effect of exercise intensity and task difficulty on human cognitive processing. Int J Psychophysiol. 2007;65:114121. PubMed ID: 17482699 doi:10.1016/j.ijpsycho.2007.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Bantoft C, Summers M, Tranent P, Palmer M, Cooley P, Pedersen S. Effect of standing or walking at a workstation on cognitive function: a randomized counterbalanced trial. Hum Factors. 2015;58(1):140149. PubMed ID: 26408647 doi:10.1177/0018720815605446

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Torbeyns T, Meeusen R. Active workstations to fight sedentary behaviour: a systematic review. Ann Res Sport Phys Act. 2014;44(5):119120. doi:10.14195/2182-7087_5_17

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Lambourne K, Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res. 2010;1341:1224. PubMed ID: 20381468 doi:10.1016/j.brainres.2010.03.091

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Dietrich A, Audiffren M. The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci Biobehav Rev. 2011;35(6):13051325. PubMed ID: 21315758 doi:10.1016/j.neubiorev.2011.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Davranche K, McMorris T. Specific effects of acute moderate exercise on cognitive control. Brain Cogn. 2009;69(3):565570. PubMed ID: 19138814 doi:10.1016/j.bandc.2008.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Pontifex M, Hillman C. Neuroelectric and behavioral indices of interference control during acute cycling. Clin Neurophysiol. 2007;118(3):570580. PubMed ID: 17095295 doi:10.1016/j.clinph.2006.09.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Davranche K, Hall B, McMorris T. Effect of acute exercise on cognitive control required during an Eriksen flanker task. J Sport Exerc Psychol. 2009;31:628639. PubMed ID: 20016112 doi:10.1123/jsep.31.5.628

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Joyce J, Graydon J, McMorris T, Davranche K. The time course effect of moderate intensity exercise on response execution and response inhibition. Brain Cogn. 2009;71(1):1419. PubMed ID: 19346049 doi:10.1016/j.bandc.2009.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Alderman B, Olson R, Mattina D. Cognitive function during low-intensity walking: a test of the treadmill workstation. J Phys Act Health. 2014;11(4):752758. PubMed ID: 25078520 doi:10.1123/jpah.2012-0097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    John D, Bassett D, Thompson D, Fairbrother J, Baldwin D. Effect of using a treadmill workstation on performance of simulated office work tasks. J Phys Act Health. 2009;6(5):617624. PubMed ID: 19953838 doi:10.1123/jpah.6.5.617

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Larson M, LeCheminant J, Carbine K, et al. Slow walking on a treadmill desk does not negatively affect executive abilities: an examination of cognitive control, conflict adaptation, response inhibition, and post-error slowing. Front Psychol. 2015;6:723. PubMed ID: 26074861 doi:10.3389/fpsyg.2015.00723

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Ohlinger C, Horn T, Berg W, Cox R. The effect of active workstation use on measures of cognition, attention, and motor skill. J Phys Act Health. 2011;8(1):119125. PubMed ID: 21297192 doi:10.1123/jpah.8.1.119

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Torbeyns T, de Geus B, Bailey S, et al. Cycling on a bike desk positively influences cognitive performance. PLoS ONE. 2016;11(11):e0165510. PubMed ID: 27806079 doi:10.1371/journal.pone.0165510

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Eriksen B, Eriksen C. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16(1):143149. doi:10.3758/BF03203267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Wechsler D. The Measurement of Adult Intelligence. Baltimore, MD: Williams & Wilkins Co; 1941.

  • 56.

    Della Sala S, Gray C, Baddeley A, Wilson L. The Visual Patterns Test: A New Test of Short-Term Visual Recall. Bury St Edmunds, UK: Thames Valley Test; 1997.

    • Search Google Scholar
    • Export Citation
  • 57.

    Paas F. Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive-load approach. J Educ Psychol. 1992;84(4):429434. doi:10.1037/0022-0663.84.4.429

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Masson M. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav Res Methods. 2011;43(3):679690. PubMed ID: 21302025 doi:10.3758/s13428-010-0049-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Wagenmakers E. A practical solution to the pervasive problems of p values. Psychon Bull Rev. 2007;14(5):779804. PubMed ID: 18087943 doi:10.3758/BF03194105

  • 60.

    Daly-Smith A, Zwolinsky S, McKenna J, et al. Systematic review of acute physically active learning and classroom movement breaks on children’s physical activity, cognition, academic performance and classroom behaviour: understanding critical design features. BMJ Open Sport Exerc Med. 2018;4(1):e000341. PubMed ID: 29629186 doi:10.1136/bmjsem-2018-000341

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 620 384 17
Full Text Views 46 22 1
PDF Downloads 25 12 1