Cardiometabolic Effects of a Workplace Cycling Intervention

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: In laboratory settings, cycling workstations improve cardiometabolic risk factors. Our purpose was to quantify risk factors following a cycling intervention in the workplace. Methods: Twenty-one office workers who sat at work ≥6 hours per day underwent baseline physiological measurements (resting blood pressure, blood lipid profile, maximum oxygen consumption [V˙O2max], body composition, and 2-h oral glucose tolerance test). Participants were randomly assigned to a 4-week intervention only group (n = 12) or a delayed intervention group (n = 9) that involved a 4-week control condition before beginning the intervention. During the intervention, participants were instructed to use the cycling device a minimum of 15 minutes per hour, which would result in a total use of ≥2 hours per day during the workday. Following the intervention, physiological measurements were repeated. Results: Participants averaged 1.77 (0.48) hours per day of cycling during the intervention with no changes in actigraphy-monitored noncycling physical activity. Four weeks of the workplace intervention increased V˙O2max (2.07 [0.44] to 2.17 [0.44] L·min−1, P < .01); end of V˙O2max test power output (166.3 [42.2] to 176.6 [46.1] W, P < .01); and high-density lipoprotein cholesterol (1.09 [0.17] to 1.17 [0.24] mmol·L−1, P = .04). Conclusions: A stationary cycling device incorporated into a sedentary workplace for 4 weeks improves some cardiometabolic risk factors with no compensatory decrease in noncycling physical activity.

The authors are with the Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO.

Peterman (James.Peterman@Colorado.edu) is corresponding author.
  • 1.

    Dunstan DW, Barr ELM, Healy GN, et al. Television viewing time and mortality: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Circulation. 2010;121(3):384391. PubMed ID: 20065160 doi:10.1161/CIRCULATIONAHA.109.894824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Matthews CE, George SM, Moore SC, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437445. PubMed ID: 22218159 doi:10.3945/ajcn.111.019620

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Duvivier BM, Schaper NC, Bremers MA, et al. Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS ONE. 2013;8(2):55542. PubMed ID: 23418444 doi:10.1371/journal.pone.0055542

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Fung TT, Hu FB, Yu J, et al. Leisure-time physical activity, television watching, and plasma biomarkers of obesity and cardiovascular disease risk. Am J Epidemiol. 2000;152(12):11711178. doi:10.1093/aje/152.12.1171

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Thorp AA, Healy GN, Owen N, et al. Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian Diabetes, Obesity and Lifestyle (AusDiab) study 2004–2005. Diabetes Care. 2010;33(2):327334. PubMed ID: 19918003 doi:10.2337/dc09-0493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Healy GN, Dunstan DW, Salmon J, et al. Objectively measured light-intensity physical activity is independently associated with 2-h plasma glucose. Diabetes Care. 2007;30(6):13841389. PubMed ID: 17473059 doi:10.2337/dc07-0114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Healy GN, Wijndaele K, Dunstan DW, et al. Objectively measured sedentary time, physical activity, and metabolic risk the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care. 2008;31(2):369371. PubMed ID: 18000181 doi:10.2337/dc07-1795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Peddie MC, Bone JL, Rehrer NJ, Skeaff CM, Gray AR, Perry TL. Breaking up prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr. 2013;98(2):358366. PubMed ID: 23803893 doi:10.3945/ajcn.112.051763

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Miller R, Brown W. Steps and sitting in a working population. Int J Behav Med. 2004;11(4):219224. PubMed ID: 15657022 doi:10.1207/s15327558ijbm1104_5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Healy GN, Eakin EG, Lamontagne AD, et al. Reducing sitting time in office workers: short-term efficacy of a multicomponent intervention. Prev Med. 2013;57(1):4348. PubMed ID: 23597658 doi:10.1016/j.ypmed.2013.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Alkhajah TA, Reeves MM, Eakin EG, Winkler EAH, Owen N, Healy GN. Sit-stand workstations: a pilot intervention to reduce office sitting time. Am J Prev Med. 2012;43(3):298303. PubMed ID: 22898123 doi:10.1016/j.amepre.2012.05027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dunstan DW, Kingwell BA, Larsen R, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976983. PubMed ID: 22374636 doi:10.2337/dc11-1931

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Peterman JE, Wright KP, Melanson EL, Kram R, Byrnes WC. Can passive cycling be an effective physical inactivity countermeasure? Med Sci Sports Exerc. 2016;48(9):18211828. PubMed ID: 27054677 doi:10.1249/MSS.0000000000000947

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Healy GN, Eakin EG, Owen N, et al. A cluster randomized controlled trial to reduce office workers’ sitting time: effect on activity outcomes. Med Sci Sports Exerc. 2016;48(9):17871797. PubMed ID: 27526175 doi:10.1249/MSS.0000000000000972

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Levine JA, Miller JM. The energy expenditure of using a “walk-and-work” desk for office workers with obesity. Br J Sports Med. 2007;41:558561. PubMed ID: 17504789 doi:10.1136/bjsm.2006.032755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ben-Ner A, Hamann DJ, Koepp G, Manohar CU, Levine J. Treadmill workstations: the effects of walking while working on physical activity and work performance. PLoS ONE. 2014;9(2):e88620. PubMed ID: 24586359 doi:10.1371/journal.pone.0088620

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    LifeSpan Fitness Web Site [Internet]. Treadmill Desk Buying Guide. 2018. https://www.lifespanfitness.com/workplace/resources/articles/buying-guide-selecting-the-right-treadmill-desk-or-bike-desk. Accessed March 8, 2019.

    • Search Google Scholar
    • Export Citation
  • 18.

    Carr LJ, Walaska KA, Marcus BH. Feasibility of a portable pedal exercise machine for reducing sedentary time in the workplace. Br J Sports Med. 2012;46(6):430435. PubMed ID: 21324889 doi:10.1136/bjsm.2010.079574

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cho J, Freivalds A, Rovniak L, Sung K, Hatzell J. Using a desk-compatible recumbent bike in an office workstation. Proceedings of the Human Factors and Ergonomics Society 58th Annual Meeting. 2014Chicago, IL16621666.

    • Export Citation
  • 20.

    Carr LJ, Karvinen K, Peavler M, Smith R, Cangelosi K. Multicomponent intervention to reduce daily sedentary time: a randomised controlled trial. BMJ Open. 2013;3(10):e003261. PubMed ID: 24141969 doi:10.1136/bmjopen-2013-003261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Chau JY, van der Ploeg HP, Dunn S, Kurko J, Bauman AE. A tool for measuring workers’ sitting time by domain: the workforce sitting questionnaire. Br J Sports Med. 2011;45(15):12161222. PubMed ID: 21947817 doi:10.1136/bjsports-2011-090214

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Howley ET, Bassett DR Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):12921301. PubMed ID: 8531628 doi:10.1249/00005768-199509000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jacobs RA, Rasmussen P, Siebenmann C, et al. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. J Appl Physiol. 2011;111:14221430. PubMed ID: 21885805 doi:10.1152/japplphysiol.00625.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Herman Hansen B, Børtnes I, Hildebrand M, Holme I, Kolle E, Anderssen SA. Validity of the ActiGraph GT1M during walking and cycling. J Sports Sci. 2014;32(6):510516. PubMed ID: 24117333 doi:10.1080/02640414.2013.844347

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777781. PubMed ID: 9588623 doi:10.1097/00005768-199805000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Krogh-Madsen R, Thyfault JP, Broholm C, et al. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J Appl Physiol. 2010;108(5):10341040. PubMed ID: 20044474 doi:10.1152/japplphysiol.00977.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Buckley JP, Hedge A, Yates T, et al. The sedentary office: an expert statement on the growing case for change towards better health and productivity. Br J Sports Med. 2015;49:13571362. PubMed ID: 26034192 doi:10.1136/bjsports-2015-094618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mansoubi M, Pearson N, Biddle SJ, Clemes SA. Using sit-to-stand workstations in offices: is there a compensation effect? Med Sci Sports Exerc. 2016;48(4):720725. PubMed ID: 26496419 doi:10.1249/MSS.0000000000000802

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Peterman JE, Morris KL, Kram R, Byrnes WC. Pedelecs as a physically active transportation mode. Eur J Appl Physiol. 2016;116(8):15651573. PubMed ID: 27299435 doi:10.1007/s00421-016-3408-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Koepp GA, Manohar CU, McCrady-Spitzer SK, et al. Treadmill desks: a 1-year prospective trial. Obesity. 2013;21(4):705711. doi:10.1002/oby.20121

  • 31.

    Williams PT. Physical fitness and activity as separate heart disease risk factors: a meta-analysis. Med Sci Sports Exerc. 2001;33(5):754761. PubMed ID: 11323544 doi:10.1097/00005768-200105000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    World Health Organization. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: World Health Organization; 2010.

    • Search Google Scholar
    • Export Citation
  • 33.

    Thorp AA, Kingwell BA, Sethi P, Hammond L, Owen N, Dunstan DW. Alternating bouts of sitting and standing attenuate postprandial glucose responses. Med Sci Sports Exerc. 2014;46(11):20532061. PubMed ID: 24637345 doi:10.1249/MSS.0000000000000337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Crespo NC, Mullane SL, Zeigler ZS, Buman MP, Gaesser GA. Effects of standing and light-intensity walking and cycling on 24-h glucose. Med Sci Sports Exerc. 2016;48(12):25032511. PubMed ID: 27471786 doi:10.1249/MSS.0000000000001062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Miyashita M, Park JH, Takahashi M, Suzuki K, Stensel D, Nakamura Y. Postprandial lipaemia: effects of sitting, standing and walking in healthy normolipidaemic humans. Int J Sports Med. 2013;34(1):2127. PubMed ID: 22895871

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kim IY, Park S, Trombold JR, Coyle EF. Effects of moderate- and intermittent low-intensity exercise on postprandial lipemia. Med Sci Sports Exerc. 2014;46(10):18821890. PubMed ID: 24576868 doi:10.1249/MSS.0000000000000324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    John D, Thompson DL, Raynor H, Bielak K, Rider B, Bassett DR. Treadmill workstations: a worksite physical activity intervention in overweight and obese office workers. J Phys Act Health. 2011;8(8):10341043. PubMed ID: 22039122 doi:10.1123/jpah.8.8.1034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Lyden K, Kozey-Keadly SL, Staudenmayer JW, Freedson PS. Validity of two wearable monitors to estimate breaks from sedentary time. Med Sci Sports Exerc. 2012;44(11):22432252. PubMed ID: 22648343 doi:10.1249/MSS.0b013e318260c477

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Straker L, Levine J, Campbell A. The effects of walking and cycling computer workstations on keyboard and mouse performance. Hum Factors. 2009;51(6):831844. PubMed ID: 20415158 doi:10.1177/0018720810362079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ekelund U, Steene-Johannessen J, Brown WJ, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonized meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):13021310. PubMed ID: 27475271 doi:10.1016/S0140-6736(16)30370-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Wang ML, Pbert L, Lemon SC. Influence of family, friend and coworker social support and social undermining on weight gain prevention among adults. Obesity. 2014;22(9):19731980. PubMed ID: 24942930 doi:10.1002/oby.20814

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 716 479 41
Full Text Views 94 61 1
PDF Downloads 68 55 1