Long-Term Physical Activity May Modify Brain Structure and Function: Studies in Young Healthy Twins

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: Physical activity (PA) is said to be beneficial to many bodily functions. However, the effects of PA in the brain are still inadequately known. The authors aimed to uncover possible brain modulation linked with PA. Here, they combine 4 of their studies with monozygotic twins, who were within-pair discordant in PA for a minimum of 1 year. Methods: The authors performed brain imaging, brain electrophysiology, and cardiovascular and body composition assessments, and collected questionnaire-based data. The present synopsis elucidates the differences associated with differing PA history in conditions without genetic variability. They present new structural and electrophysiological results. Participants, healthy, 45 male monozygotic twins (mean age 34.5 [1.5] y) differed in aerobic capacity and fat percentage (P < .001). Results: More active co-twins showed larger gray matter volumes in striatal, prefrontal, and hippocampal regions, and smaller gray matter volumes in the anterior cingulate area than less active co-twins. Functionally, visual and somatosensory automatic change detection processes differed between more and less active co-twins. Conclusions: In monozygotic twins, who differed in their PA history, differences were observed in identifiable anatomic brain locations involved with motor control and memory functions, as well as in electrophysiological measures detecting brain’s automatic processes. Better aerobic capacity may modify brain morphology and sensory function.

Tarkka, Hautasaari, Pesonen, Rottensteiner, and Kujala are with the Health Sciences/Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland. Niskanen is with the Department of Applied Physics, University of Eastern Finland, Kuopio, Finland. Kaprio is with the Department of Public Health, University of Helsinki, Helsinki, Finland; and the National Institute for Health and Welfare, Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland. Savić is with the School of Electrical Engineering, University of Belgrade, Belgrade, Serbia; and Tecnalia Serbia Ltd., Belgrade, Serbia.

Tarkka (Ina.Tarkka@jyu.fi) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Nudo RJMcNeal D. Plasticity of cerebral functions. Handb Clin Neurol. 2013;110:1321. PubMed ID: 23312627 doi: 10.1016/B978-0-444-52901-5.00002-2

  • 2.

    Nudo RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci. 2013;7:887. PubMed ID: 24399951 doi:10.3389/fnhum.2013.00887

  • 3.

    Mattson MP. Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence. Ageing Res Rev. 2015;20:3745. PubMed ID: 25576651 doi:10.1016/j.arr.2014.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Hopkins MEBucci DJ. BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory. Neurobiol Learn Mem. 2010;94(2):278284. PubMed ID: 20601027 doi:10.1016/j.nlm.2010.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hotting KRoder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9 Pt B):22432257. PubMed ID: 23623982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Erickson KIPrakash RSVoss MWet al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009;19(10):10301039. PubMed ID: 19123237 doi:10.1002/hipo.20547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Erickson KIVoss MWPrakash RSet al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. 2011;108(7):30173022. PubMed ID: 21282661 doi:10.1073/pnas.1015950108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Andel RCrowe MPedersen NLFratiglioni LJohansson BGatz M. Physical exercise at midlife and risk of dementia three decades later: a population-based study of swedish twins. J Gerontol A Biol Sci Med Sci. 2008;63(1):6266. PubMed ID: 18245762 doi:10.1093/gerona/63.1.62

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Kivipelto MMangialasche FNgandu T. Can lifestyle changes prevent cognitive impairment? Lancet Neurol. 2017;16(5):338339. PubMed ID: 28359750 doi:10.1016/S1474-4422(17)30080-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Rovio SSpulber GNieminen LJet al. The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging. 2010;31(11):19271936. PubMed ID: 19062136 doi:10.1016/j.neurobiolaging.2008.10.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Stillman CMCohen JLehman MEErickson KI. Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis. Front Hum Neurosci. 2016;10:626. PubMed ID: 28018195 doi:10.3389/fnhum.2016.00626

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Aaltonen SLatvala ARose RJKujala UMKaprio JSilventoinen K. Leisure-time physical activity and academic performance: cross-lagged associations from adolescence to young adulthood. Sci Rep. 2016;6:39215. PubMed ID: 27976699 doi:10.1038/srep39215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hautasaari PSavic AMLoberg Oet al. Somatosensory brain function and gray matter regional volumes differ according to exercise history: evidence from monozygotic twins. Brain Topogr. 2017;30(1):7786. PubMed ID: 27761665 doi:10.1007/s10548-016-0531-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Pesonen HSavic AMKujala UMTarkka IM. Long-term physical activity modifies automatic visual processing. Int J Sport Exerc Psychol. 2017:110. doi:10.1080/1612197X.2017.1321031

    • Search Google Scholar
    • Export Citation
  • 15.

    Rottensteiner MLeskinen TNiskanen Eet al. Physical activity, fitness, glucose homeostasis, and brain morphology in twins. Med Sci Sports Exerc. 2015;47(3):509518. PubMed ID: 25003773 doi:10.1249/MSS.0000000000000437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Tarkka IMSavic APekkola Eet al. Long-term physical activity modulates brain processing of somatosensory stimuli: evidence from young male twins. Biol Psychol. 2016;117:17. PubMed ID: 26860901 doi:10.1016/j.biopsycho.2016.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kaprio JPulkkinen LRose RJ. Genetic and environmental factors in health-related behaviors: studies on Finnish twins and twin families. Twin Res. 2002;5(5):366371. PubMed ID: 12537860 doi:10.1375/136905202320906101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rottensteiner MPietilainen KHKaprio JKujala UM. Persistence or change in leisure-time physical activity habits and waist gain during early adulthood: a twin-study. Obesity. 2014;22(9):20612070. doi:10.1002/oby.20788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kimura M. Visual mismatch negativity and unintentional temporal-context-based prediction in vision. Int J Psychophysiol. 2012;83(2):144155. PubMed ID: 22137965 doi:10.1016/j.ijpsycho.2011.11.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Näätänen RPaavilainen PRinne TAlho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol. 2007;118(12):25442590. doi:10.1016/j.clinph.2007.04.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Astikainen PLillstrang ERuusuvirta T. Visual mismatch negativity for changes in orientation--a sensory memory-dependent response. Eur J Neurosci. 2008;28(11):23192324. PubMed ID: 19019200 doi:10.1111/j.1460-9568.2008.06510.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Tarkka IMMicheloyannis SStokic DS. Generators for human P300 elicited by somatosensory stimuli using multiple dipole source analysis. Neuroscience. 1996;75(1):275287. PubMed ID: 8923541 doi:10.1016/0306-4522(96)00287-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Diaz KMShimbo D. Physical activity and the prevention of hypertension. Curr Hypertens Rep. 2013;15(6):659668. PubMed ID: 24052212 doi:10.1007/s11906-013-0386-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kujala UM. Evidence on the effects of exercise therapy in the treatment of chronic disease. Br J Sports Med. 2009;43(8):550555. PubMed ID: 19406731 doi:10.1136/bjsm.2009.059808

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Nishijima TTorres-Aleman ISoya H. Exercise and cerebrovascular plasticity. Prog Brain Res. 2016;225:243268. PubMed ID: 27130419

  • 26.

    Jenkins WMMerzenich MMOchs MTAllard TGuic-Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. Journal of Neurophysiology. 1990;63(1):82. http://jn.physiology.org/cgi/content/abstract/63/1/82

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Erickson KILeckie RLWeinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol Aging. 2014;35(suppl 2):20. doi:10.1016/j.neurobiolaging.2014.03.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Voelcker-Rehage CNiemann C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev. 2013;37(9 Pt B):22682295. PubMed ID: 23399048 doi:10.1016/j.neubiorev.2013.01.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Eichenbaum H. On the integration of space, time, and memory. Neuron. 2017;95(5):10071018. PubMed ID: 28858612 doi:10.1016/j.neuron.2017.06.036

  • 30.

    Ostergaard LEngedal TSMoreton Fet al. Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab. 2016;36(2):302325. PubMed ID: 26661176

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    van Praag HFleshner MSchwartz MWMattson MP. Exercise, energy intake, glucose homeostasis, and the brain. J Neurosci. 2014;34(46):1513915149. PubMed ID: 25392482 doi:10.1523/JNEUROSCI.2814-14.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Pereira ACHuddleston DEBrickman AMet al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA. 2007;104(13):56385643. PubMed ID: 17374720 doi:10.1073/pnas.0611721104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Colcombe SJErickson KIRaz Net al. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. 2003;58(2):176180. PubMed ID: 12586857 doi:10.1093/gerona/58.2.M176

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 76 76 45
Full Text Views 373 373 5
PDF Downloads 76 76 4
Altmetric Badge
PubMed
Google Scholar