Agreement Between GT3X Accelerometer and ActivPAL Inclinometer for Estimating and Detecting Changes in Different Contexts of Sedentary Time Among Adolescents

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $115.00

1 year subscription

USD $153.00

Student 2 year subscription

USD $218.00

2 year subscription

USD $285.00

Background: This investigation aimed to analyze the agreement between the GT3X accelerometer and the ActivPAL inclinometer for estimating and detecting changes in sedentary behavior of different contexts among adolescents. Methods: Secondary data from an intervention using standing desks in the classroom conducted within 2 sixth-grade classes (intervention [n = 22] and control [n = 27]) were used. The intervention took place over 16 weeks, with activity assessments (ActivPAL and GT3X) being performed 7 days before and in the last week of the intervention. Baseline information from both groups was considered for cross-sectional analysis (209 valid days), while data from 20 participants (intervention group) were used for longitudinal analysis. Results: The authors observed that GT3X overestimated sedentary time at school (16.8%), after school (13.5%), and during weekends (7.3%) compared with ActivPAL (P < .05). Outside the school (after school [r = −.188] and on weekends [r = −.260]), there was a trend to higher overestimation among adolescents with less sedentary behavior. Longitudinally, the GT3X was unable to detect changes resulting from an intervention in school hours (ActivPAL = −34.7 min·9 h−1 vs GT3X = +6.7 min·9 h−1; P < .05). Conclusions: The authors conclude that GT3X (cut-point of <100 counts·min−1) overestimated sedentary time of free-living activities and did not detect changes resulting from a classroom standing desk intervention in adolescents.

Silva is with the Department of Physical Education, Federal University of Sergipe – UFS, São Cristóvão, Brazil. Werneck is with the Department of Physical Education, São Paulo State University, UNESP, Presidente Prudente, Brazil. Silva, Werneck, Ohara, and Cyrino are with Study and Research Group in Metabolism, Nutrition, and Exercise – GEPEMENE, Londrina State University, Londrina, Brazil. Minderico, Júdice, and Sardinha are with Exercise and Health Laboratory, CIPER, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal. Minderico and Júdice are also with Lusofona University, Lisbon, Portugal.

Sardinha (lsardinha@fmh.ulisboa.pt) is corresponding author.
Journal of Physical Activity and Health
Article Sections
References
  • 1.

    Sedentary Behaviour Research Network. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37(3):540542. doi:10.1139/h2012-024

    • Search Google Scholar
    • Export Citation
  • 2.

    Tremblay MSAubert SBarnes JDet al. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Biswas AOh PIFaulkner GEet al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123. PubMed ID: 25599350 doi:10.7326/M14-1651

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Prince SALeBlanc AGColley RCSaunders TJ. Measurement of sedentary behaviour in population health surveys: a review and recommendations. PeerJ. 2017;5:e4130. PubMed ID: 29250468 doi:10.7717/peerj.4130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Atkin AJGorely TClemes SAet al. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41(5):14601471. PubMed ID: 23045206 doi:10.1093/ije/dys118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chastin SFMDontje MLSkelton DAet al. Systematic comparative validation of self-report measures of sedentary time against an objective measure of postural sitting (activPAL). Int J Behav Nutr Phys Act. 2018;15(1):21. PubMed ID: 29482617 doi:10.1186/s12966-018-0652-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ainsworth BCahalin LBuman MRoss R. The current state of physical activity assessment tools. Prog Cardiovasc Dis. 2015;57(4):387395. PubMed ID: 25446555 doi:10.1016/j.pcad.2014.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Loyen AClarke-Cornwell AMAnderssen SAet al. Sedentary time and physical activity surveillance through accelerometer pooling in four European countries. Sports Med. 2017:47(7):14211435.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Froberg ARaustorp A. Objectively measured sedentary behaviour and cardio-metabolic risk in youth: a review of evidence. Eur J Pediatr. 2014;173(7):845860. PubMed ID: 24844351 doi:10.1007/s00431-014-2333-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ridley KRidgers NDSalmon J. Criterion validity of the activPAL and ActiGraph for assessing children’s sitting and standing time in a school classroom setting. Int J Behav Nutr Phys Act. 2016;13(1):75. doi:10.1186/s12966-016-0402-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Cain KLSallis JFConway TLDyck DCalhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437450. PubMed ID: 23620392 doi:10.1123/jpah.10.3.437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Byrom BStratton GMc Carthy MMuehlhausen W. Objective measurement of sedentary behaviour using accelerometers. Int J Obes. 2016;40(11):18091812. doi:10.1038/ijo.2016.136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Altenburg TMKist-van Holthe JChinapaw MJ. Effectiveness of intervention strategies exclusively targeting reductions in children’s sedentary time: a systematic review of the literature. Int J Behav Nutr Phys Act. 2016;13:65. PubMed ID: 27276873 doi:10.1186/s12966-016-0387-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Minges KEChao AMIrwin MLOwen NPark CWhittemore R. Classroom standing desks and sedentary behavior: a systematic review. Pediatrics. 2016;137(2):e20153087. PubMed ID: 26801914 doi:10.1542/peds.2015-3087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Silva DRMinderico CSPinto FCollings PJCyrino ESSardinha LB. Impact of a classroom standing desk intervention on daily objectively measured sedentary behavior and physical activity in youth. J Sci Med Sport. 2018;21(9):919924. PubMed ID: 29409737 doi:10.1016/j.jsams.2018.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Choi LLiu ZMatthews CEBuchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357364. PubMed ID: 20581716 doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Evenson KRCatellier DJGill KOndrak KSMcMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):15571565. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Judice PBSantos DAHamilton MTSardinha LBSilva AM. Validity of GT3X and Actiheart to estimate sedentary time and breaks using ActivPAL as the reference in free-living conditions. Gait Posture. 2015;41(4):917922. PubMed ID: 25852024 doi:10.1016/j.gaitpost.2015.03.326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ridgers NDSalmon JRidley KO’Connell EArundell LTimperio A. Agreement between activPAL and ActiGraph for assessing children’s sedentary time. Int J Behav Nutr Phys Act. 2012;9:15. PubMed ID: 22340137 doi:10.1186/1479-5868-9-15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Stalesen JVik FNHansen BHBerntsen S. Comparison of three activity monitors for estimating sedentary time among children. BMC Sports Sci Med Rehabil. 2016;8:2. PubMed ID: 26855784 doi:10.1186/s13102-016-0028-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rowlands AVYates TOlds TSDavies MKhunti KEdwardson CL. Sedentary sphere: wrist-worn accelerometer-brand independent posture classification. Med Sci Sports Exerc. 2016;48(4):748754. PubMed ID: 26559451 doi:10.1249/MSS.0000000000000813

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Troiano RPMcClain JJBrychta RJChen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med. 2014;48(13):10191023. PubMed ID: 24782483 doi:10.1136/bjsports-2014-093546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Evenson KRWen FHales DHerring AH. National youth sedentary behavior and physical activity daily patterns using latent class analysis applied to accelerometry. Int J Behav Nutr Phys Act. 2016;13:55. PubMed ID: 27142304 doi:10.1186/s12966-016-0382-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 157 157 51
Full Text Views 2 2 0
PDF Downloads 2 2 0
Altmetric Badge
PubMed
Google Scholar