Estimated Physical Activity in Adolescents by Wrist-Worn GENEActiv Accelerometers

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Reports of physical activity (PA) measured via wrist-worn accelerometers in adolescents are limited. This study describes PA levels in adolescents at baseline of an obesity prevention and weight management trial. Methods: Adolescents (n = 930) at 8 high schools wore an accelerometer for 7 days, with average acceleration values of <50 mg, >150 mg, and >500 mg categorized as sedentary, moderate, and vigorous PA, respectively. In a 3-level mixed-effects generalized linear model, PA was regressed on sex, weight status, and day of week. Daily PA was nested within students, and students within schools, with random effects included for both. Results: Adolescents accumulated a median of 40 minutes daily of moderate to vigorous PA (MVPA). MVPA was significantly different for teens with obesity versus teens with normal weight (−5.4 min/d, P = .03); boys versus girls (16.3 min/d, P < .001); and Sundays versus midweek (−16.6 min/d, P < .001). Average sedentary time increased on weekends (Saturday: 19.1 min/d, P < .001; Sunday: 44.8 min, P < .001) relative to midweek but did not differ by sex or weight status. Conclusions: Interventions to increase PA in adolescents may benefit from focusing on increasing weekend PA and increasing MVPA in girls.

Sanders, Jimenez, and Kong are with the Division of Adolescent Medicine, Department of Pediatrics, University of New Mexico (UNM), Albuquerque, NM. Jimenez is also with the Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, UNM, Albuquerque, NM. Cole is with the Department of Health, Exercise, & Sports Sciences, UNM, Albuquerque, NM. Kuhlemeier is with the Department of Sociology, UNM, Albuquerque, NM. McCauley is with Clinical & Translational Science Center, UNM, Albuquerque, NM. Van Horn is with the Department of Individual, Family and Community Education, UNM, Albuquerque, NM. Kong is also with the Department of Family and Community Medicine, UNM, Albuquerque, NM.

Sanders (sreinh@salud.unm.edu) is corresponding author.
  • 1.

    US Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans. Washington, DC: US Department of Health and Human Services; 2008.

    • Search Google Scholar
    • Export Citation
  • 2.

    Hoelscher DM, Kirk S, Ritchie L, Cunningham-Sabo L. Position of the Academy of Nutrition and Dietetics: interventions for the prevention and treatment of pediatric overweight and obesity. J Acad Nutr Diet. 2013;113(10):1375–1394. PubMed ID: 24054714 doi:10.1016/j.jand.2013.08.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Katzmarzyk PT, Denstel KD, Beals K, et al. Results from the United States of America’s 2016 report card on physical activity for children and youth. J Phys Act Health. 2016;13(11, suppl 2):S307–S313. PubMed ID: 27848726 doi:10.1123/jpah.2016-0321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kann L, Kinchen S, Shanklin SL, et al. Youth risk behavior surveillance—United States, 2013. MMWR Suppl. 2014;63(4):1–168. PubMed ID: 24918634

  • 5.

    Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sports Med. 2014;48(13):1019–1023. PubMed ID: 24782483 doi:10.1136/bjsports-2014-093546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Phillips LR, Parfitt G, Rowlands AV. Calibration of the GENEA accelerometer for assessment of physical activity intensity in children. J Sci Med Sport. 2013;16(2):124–128. PubMed ID: 22770768 doi:10.1016/j.jsams.2012.05.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Beltran-Valls MR, Adelantado-Renau M, Moliner-Urdiales D. Association between objectively measured physical activity and plasma BDNF in adolescents: DADOS study. J Mol Neurosci. 2018;65(4):467–471. PubMed ID: 30039284 doi:10.1007/s12031-018-1122-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kim Y, Hibbing P, Saint-Maurice PF, et al. Surveillance of youth physical activity and sedentary behavior with wrist accelerometry. Am J Prev Med. 2017;52(6):872–879. PubMed ID: 28526364 doi:10.1016/j.amepre.2017.01.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Scott JJ, Rowlands AV, Cliff DP, Morgan PJ, Plotnikoff RC, Lubans DR. Comparability and feasibility of wrist- and hip-worn accelerometers in free-living adolescents. J Sci Med Sport. 2017; 20(12):1101–1106. PubMed ID: 28501418 doi:10.1016/j.jsams.2017.04.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Owen MB, Kerner C, Taylor SL, et al. The feasibility of a novel school peer-led mentoring model to improve the physical activity levels and sedentary time of adolescent girls: the girls peer activity (G-PACT) project. Children (Basel, Switzerland). 2018;5(6):pii: E67.

    • Search Google Scholar
    • Export Citation
  • 12.

    Rowlands AV, Harrington DM, Bodicoat DH, et al. Compliance of adolescent girls to repeated deployments of wrist-worn accelerometers. Med Sci Sports Exerc. 2018;50(7):1508–1517. PubMed ID: 29474208 doi:10.1249/MSS.0000000000001588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Harrington DM, Davies MJ, Bodicoat DH, et al. Effectiveness of the ‘Girls Active’ school-based physical activity programme: a cluster randomised controlled trial. Int J Behav Nutr Phys Act. 2018;15(1):40. PubMed ID: 29695250 doi:10.1186/s12966-018-0664-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Schaefer CA, Nigg CR, Hill JO, Brink LA, Browning RC. Establishing and evaluating wrist cutpoints for the GENEActiv accelerometer in youth. Med Sci Sports Exerc. 2014;46(4):826–833. PubMed ID: 24121241 doi:10.1249/MSS.0000000000000150

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    van Hees VT, Gorzelniak L, Dean Leon EC, et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE. 2013;8(4):e61691. PubMed ID: 23626718 doi:10.1371/journal.pone.0061691

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    van Hees VT, Fang Z, Langford J, et al. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol. 2014;117(7):738–744. doi:10.1152/japplphysiol.00421.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Sabia S, van Hees VT, Shipley MJ, et al. Association between questionnaire- and accelerometer-assessed physical activity: the role of sociodemographic factors. Am J Epidemiol. 2014;179(6):781–790. PubMed ID: 24500862 doi:10.1093/aje/kwt330

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    da Silva IC, van Hees VT, Ramires VV, et al. Physical activity levels in three Brazilian birth cohorts as assessed with raw triaxial wrist accelerometry. Int J Epidemiol. 2014;43(6):1959–1968. PubMed ID: 25361583 doi:10.1093/ije/dyu203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lawman HG, Horn ML, Wilson DK, Pate RR. A multilevel approach to examining time-specific effects in accelerometer-assessed physical activity. J Sci Med Sport. 2015;18(6):667–672. PubMed ID: 25245427 doi:10.1016/j.jsams.2014.09.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wilson DK, Van Horn ML, Siceloff ER, et al. The results of the “Positive Action for Today’s Health” (PATH) trial for increasing walking and physical activity in underserved African-American communities. Ann Behav Med. 2015;49(3):398–410. PubMed ID: 25385203 doi:10.1007/s12160-014-9664-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hildebrand M, Hansen BH, van Hees VT, Ekelund U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand J Med Sci Sports. 2017;27(12):1814–1823. doi:10.1111/sms.12795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hildebrand M, VAN Hees VT, Hansen BH, Ekelund U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc. 2014;46(9):1816–1824. PubMed ID: 24887173 doi:10.1249/MSS.0000000000000289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rowlands AV, Cliff DP, Fairclough SJ, et al. Moving forward with backward compatibility: translating wrist accelerometer data. Med Sci Sports Exerc. 2016;48(11):2142–2149. PubMed ID: 27327029 doi:10.1249/MSS.0000000000001015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Trost SG, Pate RR, Sallis JF, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34(2):350–355. PubMed ID: 11828247 doi:10.1097/00005768-200202000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Celis-Morales CA, Perez-Bravo F, Ibanez L, Salas C, Bailey ME, Gill JM. Objective vs self-reported physical activity and sedentary time—effects of measurement method on relationships with risk biomarkers. PLoS ONE. 2012;7(5):e36345. PubMed ID: 22590532 doi:10.1371/journal.pone.0036345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cliff DP, Jones RA, Burrows TL, et al. Volumes and bouts of sedentary behavior and physical activity: associations with cardiometabolic health in obese children. Obesity. 2014;22(5):E112–E118. PubMed ID: 24788574 doi:10.1002/oby.20698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mitchell JA, Dowda M, Pate RR, et al. Physical activity and pediatric obesity: a quantile regression analysis. Med Sci Sports Exerc. 2017;49(3):466–473. PubMed ID: 27755284 doi:10.1249/MSS.0000000000001129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hay J, Maximova K, Durksen A, et al. Physical activity intensity and cardiometabolic risk in youth. Arch Pediatr Adolesc Med. 2012;166(11):1022–1029. PubMed ID: 22965682 doi:10.1001/archpediatrics.2012.1028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Lohman TG, Roche AF, Martorell R. Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics; 1988.

  • 30.

    Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES): Anthropometry Procedures Manual. 2007. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/manuals.aspx?BeginYear=2017. Accessed June 6, 2019.

    • Export Citation
  • 31.

    Centers for Disease Control and Prevention. Percentile Data Files with LMS values. In: Services USDoHHed: National Center for Health Statistics; 2000. https://www.cdc.gov/growthcharts/percentile_data_files.htm. Accessed June 6, 2019.

    • Export Citation
  • 32.

    Yue Xu S, Nelson S, Kerr J, et al. Statistical approaches to account for missing values in accelerometer data—applications to modeling physical activity. Stat Methods Med Res. 2018;27(4):1168–1186. PubMed ID: 27405327 doi:10.1177/0962280216657119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    NLME: Linear and Nonlinear Mixed Effects Models. R package version 3.1-137, https://CRAN.R-project.org/package=nlme. [computer program]. 2018.

    • Export Citation
  • 34.

    Fairclough SJ, Noonan R, Rowlands AV, Van Hees V, Knowles Z, Boddy LM. Wear compliance and activity in children wearing wrist- and hip-mounted accelerometers. Med Sci Sports Exerc. 2016;48(2):245–253. PubMed ID: 26375253 doi:10.1249/MSS.0000000000000771

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Eisenmann JC, Bartee RT, Wang MQ. Physical activity, TV viewing, and weight in U.S. youth: 1999 Youth Risk Behavior Survey. Obes Res. 2002;10(5):379–385. PubMed ID: 12006637 doi:10.1038/oby.2002.52

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cooper AR, Goodman A, Page AS, et al. Objectively measured physical activity and sedentary time in youth: the International children’s accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015;12:113. PubMed ID: 26377803 doi:10.1186/s12966-015-0274-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Trost SG, McCoy TA, Vander Veur SS, Mallya G, Duffy ML, Foster GD. Physical activity patterns of inner-city elementary schoolchildren. Med Sci Sports Exerc. 2013;45(3):470–474. PubMed ID: 23059861 doi:10.1249/MSS.0b013e318275e40b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Kidokoro T, Tanaka H, Naoi K, et al. Sex-specific associations of moderate and vigorous physical activity with physical fitness in adolescents. Eur J Sport Sci. 2016;16(8):1159–1166. PubMed ID: 27232730 doi:10.1080/17461391.2016.1183050

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Jago R, Anderson CB, Baranowski T, Watson K. Adolescent patterns of physical activity differences by gender, day, and time of day. Am J Prev Med. 2005;28(5):447–452. PubMed ID: 15894148 doi:10.1016/j.amepre.2005.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Racette SB, Weiss EP, Schechtman KB, et al. Influence of weekend lifestyle patterns on body weight. Obesity (Silver Spring, Md). 2008;16(8):1826–1830. doi:10.1038/oby.2008.320

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Dossegger A, Ruch N, Jimmy G, et al. Reactivity to accelerometer measurement of children and adolescents. Med Sci Sports Exerc. 2014;46(6):1140–1146. PubMed ID: 24219978 doi:10.1249/MSS.0000000000000215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 361 361 36
Full Text Views 39 39 1
PDF Downloads 12 12 1