Association Between Physical Activity Intensity Levels and Arterial Stiffness in Healthy Children

in Journal of Physical Activity and Health
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Physical activity (PA) has a substantial impact on arterial stiffness in adults; however, evidence regarding children is scarce. The aim of this study was to examine the association between objectively measured PA with different intensities and surrogate measures of arterial stiffness in healthy children. Methods: Altogether, 80 children (41 girls and 39 boys, ranging from 8–11 y) participated in this prospective, cross-sectional study. Sedentary time and PA of light, moderate, and vigorous intensity levels were measured over a period of 7 days by accelerometry. Arterial stiffness parameters, including pulse wave velocity and central systolic blood pressure (cSBP), were noninvasively assessed by the oscillometric Mobil-O-Graph. Associations were tested using multiple linear regressions with adjustments for potential confounders (α ≤ .05). Results: PA of moderate intensity was negatively associated with cSBP (β = −0.266, P = .017). PA of vigorous intensity was inversely related to pulse wave velocity (β = −0.225, P = .045) and cSBP (β = −0.286, P = .010), respectively. Conclusion: Higher time spent in PA of moderate and vigorous intensity is associated with reduced pulse wave velocity and lower cSBP values in children. It suggests that PA is a favorable determinant of arterial health.

The authors are with the Faculty of Sport and Health Sciences, Institute of Preventive Pediatrics, Technical University of Munich, Munich, Germany.

Böhm (birgit.boehm@tum.de) is corresponding author.
  • 1.

    Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6)(suppl 3):S197S239. doi:10.1139/apnm-2015-0663

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Carson V, Ridgers ND, Howard BJ, et al. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS One. 2013;8(8):e71417. PubMed ID: 23951157 doi:10.1371/journal.pone.0071417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Väistö J, Haapala EA, Viitasalo A, et al. Longitudinal associations of physical activity and sedentary time with cardiometabolic risk factors in children. Scand J Med Sci Sports. 2019;29(1):113123. PubMed ID: 30276872 doi:10.1111/sms.13315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Owens S, Galloway R, Gutin B. The case for vigorous physical activity in youth. Am J Lifestyle Med. 2017;11(2):96115. PubMed ID: 30202319 doi:10.1177/1559827615594585

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of exercise. Front Cardiovasc Med. 2018;5:135. PubMed ID: 30324108 doi:10.3389/fcvm.2018.00135.

  • 6.

    González-Gross M, Meléndez A. Sedentarism, active lifestyle and sport: impact on health and obesity prevention. Nutr Hosp. 2013;28(5):8998.

  • 7.

    World Health Organization. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: WHO; 2010.

  • 8.

    Finger JD, Varnaccia G, Borrmann A, Lange C. Körperliche Aktivität von Kindern und Jugendlichen in Deutschland–Querschnittergebnisse aus KiGGS Welle 2 und Trends. J Health Monitoring. 2018;3(1):2431.

    • Search Google Scholar
    • Export Citation
  • 9.

    Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med. 1998;338(23):16501656. PubMed ID: 9614255 doi:10.1056/NEJM199806043382302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Quinn U, Tomlinson LA, Cockcroft JR. Arterial stiffness. J R Soc Med Cardiovasc Dis. 2012;18(1):18. doi:10.1258/cvd.2012.012024

  • 11.

    Liao D, Arnett DK, Tyroler HA, et al. Arterial stiffness and the development of hypertension: the ARIC study. Hypertension. 1999;34(2):201206. PubMed ID: 10454441 doi:10.1161/01.HYP.34.2.201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Berenson GS. Childhood risk factors predict adult risk associated with subclinical cardiovascular disease: the Bogalusa Heart Study. Am J Cardiol. 2002;90(10):L3L7. doi:10.1016/S0002-9149(02)02953-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Laurent S. Surrogate measures of arterial stiffness. Hypertension. 2006;47(3):325326. PubMed ID: 16432046 doi:10.1161/01.HYP.0000200701.43172.9a

  • 14.

    Gando Y, Yamamoto K, Murakami H, et al. Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension. 2010;56(3):540546. PubMed ID: 20606102 doi:10.1161/HYPERTENSIONAHA.110.156331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Horta BL, Schaan BD, Bielemann RM, et al. Objectively measured physical activity and sedentary-time are associated with arterial stiffness in Brazilian young adults. Atherosclerosis. 2015;243(1):148154. PubMed ID: 26386211 doi:10.1016/j.atherosclerosis.2015.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Parsons TJ, Sartini C, Ellins EA, et al. Objectively measured physical activity, sedentary time and subclinical vascular disease: cross-sectional study in older British men. Prev Med. 2016;89(1):194199. doi:10.1016/j.ypmed.2016.05.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Schack-Nielsen L, Mølgaard C, Larsen D, Martyn C, Michaelsen KF. Arterial stiffness in 10-year-old children: current and early determinants. Br J Nutr. 2005;94(6):10041011. doi:10.1079/BJN20051518

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Veijalainen A, Tompuri T, Haapala E, et al. Associations of cardiorespiratory fitness, physical activity, and adiposity with arterial stiffness in children. Scand J Med Sci Sports. 2016;26(8):943950. PubMed ID: 26220100 doi:10.1111/sms.12523

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Reed KE, Warburton DE, Lewanczuk RZ, et al. Arterial compliance in young children: the role of aerobic fitness. Eur J Cardiovasc Prev Rehabil. 2005;12(5):492497. PubMed ID: 16210937 doi:10.1097/01.hjr.0000176509.84165.3d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Walker DJ, MacIntosh A, Kozyrskyj A, Becker A, McGavock J. The associations between cardiovascular risk factors, physical activity, and arterial stiffness in youth. J Phys Act Health. 2013;10(2):198204. PubMed ID: 22820042 doi:10.1123/jpah.10.2.198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Loprinzi PD, Cardinal BJ. Measuring children’s physical activity and sedentary behaviors. J Exerc Sci Fit. 2011;9(1):1523. doi:10.1016/S1728-869X(11)60002-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Sakuragi S, Abhayaratna K, Gravenmaker KJ, et al. Influence of adiposity and physical activity on arterial stiffness in healthy children: the lifestyle of our kids study. Hypertension. 2009;53(4):611616. PubMed ID: 19273744 doi:10.1161/HYPERTENSIONAHA.108.123364

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Leary SD, Ness AR, Smith GD, et al. Physical activity and blood pressure in childhood: findings from a population-based study. Hypertension. 2008;51(1):9298. PubMed ID: 18071055 doi:10.1161/HYPERTENSIONAHA.107.099051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Haapala EA, Väistö J, Veijalainen A, et al. Associations of objectively measured physical activity and sedentary time with arterial stiffness in pre-pubertal children. Pediatr Exerc Sci. 2017;29(3):326335. PubMed ID: 28121246 doi:10.1123/pes.2016-0168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hopkins N, Stratton G, Tinken T, et al. Relationships between measures of fitness, physical activity, body composition and vascular function in children. Atherosclerosis. 2009;204(1):244249. PubMed ID: 18930229 doi:10.1016/j.atherosclerosis.2008.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nettlefold L, McKay HA, Naylor P-J, Bredin SS, Warburton DE. The relationship between objectively measured physical activity, sedentary time, and vascular health in children. Am J Hypertens. 2012;25(8):914919. PubMed ID: 22673018 doi:10.1038/ajh.2012.68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ried-Larsen M, Grøntved A, Froberg K, Ekelund U, Andersen LB. Physical activity intensity and subclinical atherosclerosis in Danish adolescents: the European Youth Heart Study. Scand J Med Sci Sports. 2013;23(3):e168e177.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kromeyer-Hauschild K, Wabitsch M, Kunze D, et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschrift Kinderheilkunde. 2001;149(8):807818. doi:10.1007/s001120170107

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Neuhauser H, Schienkiewitz A, Rosario AS, Dortschy R, Kurth BM. Referenzperzentile für anthropometrische Maßzahlen und Blutdruck aus der Studie zur Gesundheit von Kindern und Jugendlichen in Deutschland (KiGGS). 2nd ed. Berlin, Germany: RKI; 2013.

    • Search Google Scholar
    • Export Citation
  • 30.

    Weiß W, Gohlisch C, Harsch-Gladisch C, Tölle M, Zidek W, van der Giet M. Oscillometric estimation of central blood pressure: validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Press Monit. 2012;17(3):128131. PubMed ID: 22561735 doi:10.1097/MBP.0b013e328353ff63

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Papaioannou TG, Argyris A, Protogerou AD, et al. Non-invasive 24 hour ambulatory monitoring of aortic wave reflection and arterial stiffness by a novel oscillometric device: the first feasibility and reproducibility study. Int J Cardiol. 2013;169(1):5761. PubMed ID: 24063914 doi:10.1016/j.ijcard.2013.08.079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):15571565. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Germano-Soares AH, Andrade-Lima AH, Menêses AL, et al. Association of time spent in physical activities and sedentary behaviors with carotid-femoral pulse wave velocity: a systematic review and meta-analysis. Atherosclerosis. 2018;269(1):211218. doi:10.1016/j.atherosclerosis.2018.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lurbe E, Agabiti-Rosei E, Cruickshank JK, et al. European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. Am J Hypertens. 2016;34(10):18871920. doi:10.1097/HJH.0000000000001039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Harbin MM, Hultgren NE, Kelly AS, Dengel DR, Evanoff NG, Ryder JR. Measurement of central aortic blood pressure in youth: role of obesity and sex. Am J Hypertens. 2018;31(12):12861292. PubMed ID: 30107492 doi:10.1093/ajh/hpy128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Walter LM. Obesity and central blood pressure in children and adolescents. Am J Hypertens. 2018;31(12):12661267. PubMed ID: 30203032 doi:10.1093/ajh/hpy140

  • 37.

    Pereira EN, de Oliveira Vitorino PV, de Souza WKSB, et al. Assessment of central blood pressure and arterial stiffness in practicing long-distance walking race. Int J Cardiovasc Sci. 2017;30(6):510516.

    • Search Google Scholar
    • Export Citation
  • 38.

    Hametner B, Wassertheurer S, Kropf J, Mayer C, Eber B, Weber T. Oscillometric estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements. Blood Press Monit. 2013;18(3):173176. PubMed ID: 23571229 doi:10.1097/MBP.0b013e3283614168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Weiß W, Tölle M, Zidek W, van der Giet M. Validation of the Mobil-O-Graph: 24 h-blood pressure measurement device. Blood Press Monit. 2010;15(4):225228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Vlachopoulos C, Xaplanteris P, Aboyans V, et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation. Atherosclerosis. 2015;241(2):507532. PubMed ID: 26117398 doi:10.1016/j.atherosclerosis.2015.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 289 289 117
Full Text Views 15 15 4
PDF Downloads 8 8 3