Effects of 2 Models of Aquatic Exercise Training on Cardiorespiratory Responses of Patients With Type 2 Diabetes: The Diabetes and Aquatic Training Study—A Randomized Controlled Trial

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: There are a lack of clinical trials with suitable methodological quality that compare aquatic exercise training types in type 2 diabetes (T2D) treatment. This study aimed to compare the effects of aerobic and combined aquatic training on cardiorespiratory outcomes in patients with T2D. Methods: Untrained patients with T2D were randomized to receive an aerobic aquatic training, a combined aquatic training, or a procedure control in 3 weekly sessions for 15 weeks. The sessions were 50 minutes long. The intensities were from 85% to 100% of heart rate of anaerobic threshold and at maximal velocity for aerobic and resistance parts, respectively. Resting heart rate, peak oxygen uptake (VO2peak), and oxygen uptake corresponding to second ventilatory threshold and its relation with VO2peak were evaluated. Results: Participants were 59.0 (8.2) years old and 51% women. Intervention groups increased in VO2peak (aerobic aquatic training group: 4.48 mL·kg−1·min−1, P = .004; combined aquatic training group: 5.27 mL·kg−1·min−1; P = .006) and oxygen uptake corresponding to second ventilatory threshold, whereas the control group presented an increase in oxygen uptake corresponding to second ventilatory threshold and minimal change in VO2peak. Conclusions: Aerobic and combined aquatic exercise interventions improve the cardiorespiratory fitness of patients with T2D.

Delevatti is with the Department of Physical Education, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil. Kanitz, Bracht, Lisboa, Marson, Reichert, Bones, and Kruel are with the Department of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.

Bracht (claudiagbracht@gmail.com) is corresponding author.
  • 1.

    Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):20242035. PubMed ID: 19454641 doi:10.1001/jama.2009.681

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Johannsen NM, Swift DL, Lavie CJ, Earnest CP, Blair SN, Church TS. Categorical analysis of the impact of aerobic and resistance exercise training, alone and in combination, on cardiorespiratory fitness levels in patients with type 2 diabetes: results from the HART-D study. Diabetes Care. 2013;36(10):33053312. PubMed ID: 23877979 doi:10.2337/dc12-2194

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    American Diabetes Association Guidelines. Standards of medical care in diabetes. Diabetes Care. 2020;43(suppl 1):S1S212.

  • 4.

    Boulé NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus. Diabetologia. 2003;46(8):10711081. PubMed ID: 12856082

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Larose J, Sigal RJ, Khandwala F, Prud’homme D, Boulé NG, Kenny GP. Associations between physical fitness and HbA1c in type 2 diabetes mellitus. Diabetologia. 2011;54(1):93102. PubMed ID: 20953579 doi:10.1007/s00125-010-1941-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Farag YMK, Gaballa MR. Diabesity: an overview of a rising epidemic. Nephrol Dial Transplant. 2011;26(1):2835. PubMed ID: 21045078 doi:10.1093/ndt/gfq576

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Delevatti RS, Alberton CL, Kanitz AC, Marson EC, Kruel LFM. Vertical ground reaction force during land- and water-based exercise performed by patients with type 2 diabetes. Med Sportiva. 2015;11(1):25012508.

    • Search Google Scholar
    • Export Citation
  • 8.

    Delevatti RS, Pinho CDF, Kanitz AC, et al. Glycemic reductions following water- and land-based exercise in patients with type 2 diabetes mellitus. Complement Ther Clin Pract. 2016;24:7377. PubMed ID: 27502804 doi:10.1016/j.ctcp.2016.05.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Epstein M. Renal effects of head-out water immersion in humans: a 15-year update. Physiol Rev. 1992;72(3):563621. PubMed ID: 1626032 doi:10.1152/physrev.1992.72.3.563

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pendergast DR, Moon RE, Krasney JJ, Held HE, Zamparo P. Human physiology in an aquatic environment. Compr Physiol. 2015;5:17051750. PubMed ID: 26426465

    • Search Google Scholar
    • Export Citation
  • 11.

    Nuttamonwarakul A, Amatyakul S, Suksom D. Twelve weeks of aqua-aerobic exercise improve physiological adaptations and glycemic control in elderly patients with type 2 diabetes. J Exerc Physiol Online. 2012;15(2):6470.

    • Search Google Scholar
    • Export Citation
  • 12.

    Nuttamonwarakul A, Amatyakul S, Suksom D. Effects of water-based versus land-based exercise training on cutaneous microvascular reactivity and C-reactive protein in older women with type 2 diabetes mellitus. J Exerc Physiol Online. 2014;17(4):2733.

    • Search Google Scholar
    • Export Citation
  • 13.

    Asa C, Maria S, Katharina SS, Bert A. Aquatic exercise is effective in improving exercise performance in patients with heart failure and type 2 diabetes mellitus. Evid Based Complement Alternat Med. 2012;2012:349209. PubMed ID: 22593770

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cugusi L, Cadeddu C, Nocco S, et al. Effects of an aquatic-based exercise program to improve cardiometabolic profile, quality of life, and physical activity levels in men with type 2 diabetes mellitus. PM R. 2015;7(2):141148. PubMed ID: 25217820 doi:10.1016/j.pmrj.2014.09.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Delevatti RS, Kanitz AC, Alberton CL, et al. Glucose control can be similarly improved after aquatic or dry-land aerobic training in patients with type 2 diabetes: a randomized clinical Trial. J Sci Med Sport. 2016;19(8):688693. PubMed ID: 26777722 doi:10.1016/j.jsams.2015.10.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Suntraluck S, Tanaka H, Suksom D. The relative efficacy of land-based and water-based exercise training on macro- and micro-vascular functions in older patients with type 2 diabetes. J Aging Phys Act. 2017;25(3):446452. doi:10.1123/japa.2016-0193

    • Search Google Scholar
    • Export Citation
  • 17.

    Boutron I, Altman DG, Moher D, Schulz KF, Ravaud P, CONSORT NPT Group. CONSORT statement for randomized trials of nonpharmacologic treatments: a 2017 update and a CONSORT extension for nonpharmacologic trial abstracts. Ann Intern Med. 2017;167(1):4047. PubMed ID: 28630973 doi:10.7326/M17-0046

    • Search Google Scholar
    • Export Citation
  • 18.

    Meara E, Chong K, Gardner R, Jardine AG, Neill JB, McDonagh TA. The Modification of Diet in Renal Disease (MDRD) equations provide valid estimations of glomerular filtration rates in patients with advanced heart failure. Eur J Heart Fail. 2006;8(1):6367. doi:10.1016/j.ejheart.2005.04.013

    • Search Google Scholar
    • Export Citation
  • 19.

    Delevatti RS, Kanitz AC, Alberton CL, et al. Heart rate deflection point as an alternative method to identify the anaerobic threshold in patients with type 2 diabetes. Apunts Med Sport. 2015;50(188):123128.

    • Search Google Scholar
    • Export Citation
  • 20.

    Almada BP, Kanitz AC, Alberton CL, Zaffari P, Pinto SS, Kruel LFM. Respostas cardiorrespiratórias de seis exercícios de hidroginástica realizados por mulheres pós-menopáusicas. Rev Bras Ativ Fis Saúde. 2014;19(3):333341.

    • Search Google Scholar
    • Export Citation
  • 21.

    Alberton CL, Kanitz AC, Pinto SS, et al. Determining the anaerobic threshold in water aerobic exercises: a comparison between the heart rate deflection point and the ventilatory method. J Sports Med Phys Fitness. 2013;53(4):358367. PubMed ID: 23828283

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Petroski EL, Pires-Neto CS. Validação de equações antropométricas para a estimativa da densidade corporal em mulheres. Rev Bras Ativ Fis Saúde. 1995;1(2):6573.

    • Search Google Scholar
    • Export Citation
  • 23.

    Siri WE. Body composition from fluid spaces and density: analysis of methods. Nutrition. 1993;9(5):480491. PubMed ID: 8286893

  • 24.

    Wasserman K, Whipp BJ, Koyal SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973;35(2):236243. PubMed ID: 4723033 doi:10.1152/jappl.1973.35.2.236

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Howley ET, Basset DR Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):12921301. PubMed ID: 8531628 doi:10.1249/00005768-199509000-00009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York, NY: Lawrence Erlbaum Associates; 1988.

  • 27.

    Montgomery DC. Design and Analysis of Experiments. New York, NY: Wiley; 1991.

  • 28.

    Scheer AS, Naylor LH, Gan SK, et al. The effects of water-based exercise training in people with type 2 diabetes. Med Sci Sports Exerc. 2020;52(2):417424. PubMed ID: 31469709 doi:10.1249/MSS.0000000000002133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Yang Z, Scott CA, Mao C, Tang J, Farmer AJ. Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis. Sports Med. 2014;44(4):487499. PubMed ID: 24297743 doi:10.1007/s40279-013-0128-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sui X, Lamonte MJ, Blair SN. Cardiorespiratory fitness as a predictor of nonfatal cardiovascular events in asymptomatic women and men. Am J Epidemiol. 2007;165(12):14131423. PubMed ID: 17406007 doi:10.1093/aje/kwm031

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Katzmarzyk PT, Church TS, Janssen I, Ross R, Blair SN. Metabolic syndrome, obesity, and mortality: impact of cardiorespiratory fitness. Diabetes Care. 2005;28(2):391397. PubMed ID: 15677798 doi:10.2337/diacare.28.2.391

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Wei M, Kampert JB, Barlow CE, et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA. 1999;282(16):15471553. PubMed ID: 10546694 doi:10.1001/jama.282.16.1547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Pavón DJ, Artero EG, Lee DC, et al. Cardiorespiratory fitness and risk of sudden cardiac death in men and women in the United States: a prospective evaluation from the aerobics center longitudinal study. Mayo Clin Proc. 2016;91(7):849857. doi:10.1016/j.mayocp.2016.04.025

    • Search Google Scholar
    • Export Citation
  • 34.

    Simões HG, Campbell CS, Kokubun E, Denadai BS, Baldissera V. Blood glucose responses in humans mirror lactate responses for individual anaerobic threshold and for lactate minimum in track tests. Eur J Appl Physiol. 1999;80(1):3440. doi:10.1007/s004210050555

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Simões HG, Campbell CS, Kushnick MR, et al. Blood glucose threshold and the metabolic responses to incremental exercise tests with and without prior lactic acidosis induction. Eur J Appl Physiol. 2003;89(6):60311. PubMed ID: 12759761

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Church TS, Blair SN, Cocreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes. JAMA. 2010;304(20):22532262. PubMed ID: 21098771 doi:10.1001/jama.2010.1710

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Earnest CP, Johannsen NM, Swift DL, et al. Aerobic and strength training in concomitant metabolic syndrome and type 2 diabetes. Med Sci Sports Exerc. 2014;46(7):12931301. PubMed ID: 24389523 doi:10.1249/MSS.0000000000000242

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Conners RT, Caputo JL, Coons JM, Fuller DK, Morgan DW. Impact of underwater treadmill training on glycemic control, blood lipids, and health-related fitness in adults with type 2 diabetes. Clin Diabetes. 2019;37(1):3643. PubMed ID: 30705495 doi:10.2337/cd17-0066

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Costa RR, Kanitz AC, Reichert T, et al. Water-based aerobic training improves strength parameters and cardiorespiratory outcomes in elderly women. Exp Gerontol. 2018;108:231239. PubMed ID: 29730330 doi:10.1016/j.exger.2018.04.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5 5 0
Full Text Views 190 190 159
PDF Downloads 85 85 60