Trends in Walking, Moderate, and Vigorous Physical Activity Participation Across the Socioeconomic Gradient in New South Wales, Australia From 2002 to 2015

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: A combination of walking, other moderate physical activity, and vigorous physical activity is recommended for achieving good health. Vigorous activity has unique health benefits but may be less accessible to disadvantaged people. To reduce health inequity, we need to understand the differences in physical activity participation among socioeconomic subgroups and whether this is changing over time. Methods: Data from the 2002 to 2015 Adult New South Wales Population Health Surveys (164,652 responses) were analyzed to investigate trends in walking, moderate and vigorous physical activity participation by socioeconomic status as measured by educational attainment. Analysis used age- and sex-adjusted multivariable linear models that accounted for complex survey design. Results: In 2002, the highest socioeconomic group spent 18.5 (95% confidence interval, 8.2–28.8) minutes per week more than the lowest socioeconomic group being vigorously active. By 2015, this gap had steadily increased to 41.4 (95% confidence interval, 27.6–55.1) minutes per week. Inequity between groups was also found for duration of moderate activity but not for time spent walking. Conclusions: Low participation in vigorous activity in the lowest socioeconomic group is likely driving increasing inequities in physical activity and widening participation gaps over time. Barriers preventing the most disadvantaged people in New South Wales from engaging in vigorous activity should be addressed urgently.

Gugusheff, Foley, Owen, Drayton, Ding, Stamatakis, Rasmussen, Bauman, and Thomas are with the Prevention Research Collaboration, School of Public Health, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia. Gugusheff is also with the Centre for Epidemiology and Evidence, New South Wales Ministry of Health, Sydney, NSW, Australia. Rasmussen is with also The National Research Centre for the Working Environment, Copenhagen, Denmark; and the Section of Social Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.

Thomas (margaret.thomas@sydney.edu.au) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 944 KB)
  • 1.

    Sofi F, Capalbo A, Marcucci R, et al. Leisure time but not occupational physical activity significantly affects cardiovascular risk factors in an adult population. Eur J Clin Investig. 2007;37(12):947953. doi:10.1111/j.1365-2362.2007.01884.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM. Dose Response Between Physical Activity and Risk of Coronary Heart Disease. Circulation 2011;124(7):789795. PubMed ID: 21810663 doi:10.1161/CIRCULATIONAHA.110.010710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Laaksonen DE, Lindström J, Lakka TA, et al. Physical activity in the prevention of type 2 diabetes: the Finnish diabetes prevention study. Diabetes. 2005;54(1):158165. PubMed ID: 15616024 doi:10.2337/diabetes.54.1.158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Smith AD, Crippa A, Woodcock J, et al. Physical activity and incident type 2 diabetes mellitus: a systematic review and dose–response meta-analysis of prospective cohort studies. Diabetologia. 2016. 59(12):25272545. PubMed ID: 27747395 doi:10.1007/s00125-016-4079-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lee I-M, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219229. PubMed ID: 22818936 doi:10.1016/S0140-6736(12)61031-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Friedenreich CM, Neilson HK, Lynch BM. State of the epidemiological evidence on physical activity and cancer prevention. Eur J Cancer. 2010;46(14):25932604. PubMed ID: 20843488 doi:10.1016/j.ejca.2010.07.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bauman A, Merom D, Bull FC, et al. Updating the evidence for physical activity: summative reviews of the epidemiological evidence, prevalence, and interventions to promote “active aging”. Gerontologist. 2016;56(suppl 2):S268S80. doi:10.1093/geront/gnw031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    World Health Organization. Global Recommendations on Physical Activity for Health. WHO Press; 2010. https://www.who.int/dietphysicalactivity/factsheet_recommendations/en/. Accessed February 15, 2019.

    • Search Google Scholar
    • Export Citation
  • 9.

    Australian Government Department of Health. Australia’s Physical Activity and Sedentary Behaviour Guidelines. 2017. http://www.health.gov.au/internet/main/publishing.nsf/Content/health-pubhlth-strateg-phys-act-guidelines. Accessed February 15, 2019.

    • Search Google Scholar
    • Export Citation
  • 10.

    Shiroma EJ, Sesso HD, Moorthy MV, Buring JE, Lee IM. Do moderate-intensity and vigorous-intensity physical activities reduce mortality rates to the same extent? J Am Heart Assoc. 2014;3(5):e000802. PubMed ID: 25326527 doi:10.1161/JAHA.114.000802.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    World Helath Organization. Global recommendations on physical activity for health. 2011. https://www.who.int/dietphysicalactivity/physical-activity-recommendations-18-64years.pdf. Accessed February 15, 2019.

    • Export Citation
  • 12.

    Sattelmair J, Pertman J, Ding EL, et al. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011;124(7):789795. PubMed ID: 21810663 doi:10.1161/CIRCULATIONAHA.110.010710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97(1):141147. PubMed ID: 16377300 doi:10.1016/j.amjcard.2005.07.130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ross R, Janssen I. Vigorous intensity physical activity is related to the metabolic syndrome independent of the physical activity dose. Int J Epidemiol. 2012;41(4):11321140. doi:10.1093/ije/dys038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hidalgo-Santamaria M, Bes-Rastrollo M, Martinez-Gonzalez MA, et al. Physical activity intensity and cardiovascular disease prevention—from the Seguimiento Universidad De Navarra study. Am J Cardiol. 2018;122(11):18711878. doi:10.1016/j.amjcard.2018.08.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rey Lopez JP, Gebel K, Chia D, Stamatakis E. Associations of vigorous physical activity with all-cause, cardiovascular and cancer mortality among 64,913 adults. BMJ Open Sport Exerc Med. 2019;5(1):e000596 PubMed ID: 31548909 doi:10.1136/bmjsem-2019-000596

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Löllgen H, Böckenhoff A, Knapp G. Physical activity and all-cause mortality: an updated meta-analysis with different intensity categories. Int J Sports Med. 2009;30(3):213224. doi:10.1055/s-0028-1128150

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gebel K, Ding D, Chey T, et al. Effect of moderate to vigorous physical activity on all-cause mortality in middle-aged and older Australians. JAMA Intern Med. 2015;175(6):970977. PubMed ID: 25844882 doi:10.1001/jamainternmed.2015.0541

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Scholes S, Bann D. Education-related disparities in reported physical activity during leisure-time, active transportation, and work among US adults: repeated cross-sectional analysis from the National Health and Nutrition Examination Surveys, 2007 to 2016. BMC Public Health. 2018;18(1):926. PubMed ID: 30055611 doi:10.1186/s12889-018-5857-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Szilcz M, Mosquera PA, Sebastian MS, et al. Time trends in absolute and relative socioeconomic inequalities in leisure time physical inactivity in northern Sweden. Scand J Public Health. 2018;46(1):112123. PubMed ID: 28707564 doi:10.1177/1403494817713123

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ding D, Do A, Schmidt H-M, et al. A widening gap? Changes in multiple lifestyle risk behaviours by socioeconomic status in New South Wales, Australia, 2002–2012. PLoS One. 2015;10(8):e0135338. PubMed ID: 26291457 doi:10.1371/journal.pone.0135338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Gidlow C, Johnston LH, Crone D, et al. A systematic review of the relationship between socio-economic position and physical activity. Health Educ J. 2006;65(4):338367. doi:10.1177/0017896906069378

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Merom D, Chey T, Chau J, et al. Are messages about lifestyle walking being heard? Trends in walking for all purposes in New South Wales (NSW), Australia. Prev Med. 2009;48(4):341344. PubMed ID: 19232369 doi:10.1016/j.ypmed.2009.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Sport 2030—National Sport Plan. Commonwealth of Australia as represented by the Department of Health, Canberra, 2018. https://www.sportaus.gov.au/nationalsportplan. Accessed February 15, 2019.

    • Search Google Scholar
    • Export Citation
  • 25.

    Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World. Geneva, Switzerland: World Health Organization; 2018.

    • Search Google Scholar
    • Export Citation
  • 26.

    Health NSW Government. NSW Population Health Survey. 2017. https://www.health.nsw.gov.au/epidemiology/Pages/nsw-population-health-survey.aspx. Accessed February 15, 2019.

    • Search Google Scholar
    • Export Citation
  • 27.

    Barr ML, Van Ritten JJ, Steel DG, et al. Inclusion of mobile phone numbers into an ongoing population health survey in New South Wales, Australia: design, methods, call outcomes, costs and sample representativeness. BMC Med Res Method. 2012;12(1):177. doi:10.1186/1471-2288-12-177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    NSW Department of Health. NSW Health Survey: Review of Weighting Procedures. 2006. https://www.health.nsw.gov.au/surveys/other/Documents/review-weighting.pdf. Accessed February 15, 2019.

    • Search Google Scholar
    • Export Citation
  • 29.

    Barr M. Call Outcome Information for the NSW Population Health Survey Using AAPOR Definitions 2002–2012. NSW Ministry of Health; 2013. https://www.health.nsw.gov.au/surveys/other/Documents/. Accessed February 15, 2019.

    • Search Google Scholar
    • Export Citation
  • 30.

    NSW Population Health Surveys. 2018. http://www.health.nsw.gov.au/surveys/adult.aspx. Accessed February 15, 2019.

    • Export Citation
  • 31.

    Australian Institute of Health and Welfare. The Active Australia Survey: A Guide and Manual for Implementation, Analysis and Reporting. Canberra: AIHW; 2003

    • Search Google Scholar
    • Export Citation
  • 32.

    Australian Bureau of Statistics. Technical Paper: Socio-Economic Indexes for Areas (SEIFA). 2013. www.abs.gov.au/websitedbs/censushome.nsf/home/seifa. Accessed February 15, 2019.

    • Export Citation
  • 33.

    Lumley T. Package ‘survey’. 2013. https://cran.r-project.org/web/packages/survey/survey.pdf. Accessed February 15, 2019.

    • Export Citation
  • 34.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • 35.

    Turrell G, Haynes M, Wilson L-A, et al. Can the built environment reduce health inequalities? A study of neighbourhood socioeconomic disadvantage and walking for transport. Health Place. 2013;19:8998. PubMed ID: 23207291 doi:10.1016/j.healthplace.2012.10.008.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ng N, Söderman K, Norberg M, et al. Increasing physical activity, but persisting social gaps among middle-aged people: trends in Northern Sweden from 1990 to 2007. Global Health Action. 2011;4(1):6347. doi:10.3402/gha.v4i0.6347.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hoebel J, Finger JD, Kuntz B, et al. Changing educational inequalities in sporting inactivity among adults in Germany: a trend study from 2003 to 2012. BMC Public Health. 2017;17(1):547. PubMed ID: 28587641 doi:10.1186/s12889-017-4478-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Brown W, Bauman A, Chey T, et al. Comparison of surveys used to measure physical activity. Aust N Z J Public Health. 2004;28(2):128134. PubMed ID: 15233351 doi:10.1111/j.1467-842X.2004.tb00925.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Guthold R, Stevens GA, Riley LM, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Global Health. 2018;6(10):e1077e1086. PubMed ID: 30193830 doi:10.1016/S2214-109X(18)30357-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Bauman AE, Reis RS, Sallis JF, et al. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258271. PubMed ID: 22818938 doi:10.1016/S0140-6736(12)60735-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Cerin E, Leslie E. How socio-economic status contributes to participation in leisure-time physical activity. Soc Sci Med. 2008;66(12):25962609. PubMed ID: 18359137 doi:10.1016/j.socscimed.2008.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Burton NW, Turrell G, Oldenburg B. Participation in recreational physical activity: why do socioeconomic groups differ? Health Educ Behav. 2003;30(2):225244. PubMed ID: 12693525 doi:10.1177/1090198102251036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Borodulin K, Sipilä N, Rahkonen O, et al. Socio-demographic and behavioral variation in barriers to leisure-time physical activity. Scand J Public Health. 2016;44(1):6269. PubMed ID: 26392420 doi:10.1177/1403494815604080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Khan KM, Thompson AM, Blair SN, et al. Sport and exercise as contributors to the health of nations. Lancet. 2012;380(9836):5964. PubMed ID: 22770457 doi:10.1016/S0140-6736(12)60865-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Prince SA, Adamo KB, Hamel ME, et al. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5(1):56. doi:10.1186/1479-5868-5-56

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Tomaz S, Lambert E, Karpul D, et al. Cardiovascular fitness is associated with bias between self-reported and objectively measured physical activity. Eur J Sport Sci. 2016;16(1):149157. PubMed ID: 25537282 doi:10.1080/17461391.2014.987323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Beenackers MA, Kamphuis CB, Giskes K, et al. Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: a systematic review. Int J Behav Nutr Phys Act. 2012;9(1):116. doi:10.1186/1479-5868-9-116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 168 168 168
Full Text Views 20 20 20
PDF Downloads 15 15 15