A Mapping Review of Physical Activity Recordings Derived From Smartphone Accelerometers

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Smartphones with embedded sensors, such as accelerometers, are promising tools for assessing physical activity (PA), provided they can produce valid and reliable indices. The authors aimed to summarize studies on the PA measurement properties of smartphone accelerometers compared with research-grade PA monitors or other objective methods across the intensity spectrum, and to report the effects of different smartphone placements on the accuracy of measurements. Methods: A systematic search was conducted on July 1, 2019 in PubMed, Embase, SPORTDiscus, and Scopus, followed by screening. Results: Nine studies were included, showing moderate-to-good agreements between PA indices derived from smartphone accelerometers and research-grade PA monitors and/or indirect calorimetry. Three studies investigated measurement properties across smartphone placements, with small differences. Large heterogeneity across studies hampered further comparisons. Conclusions: Despite moderate-to-good agreements between PA indices derived from smartphone accelerometers and research-grade PA monitors and/or indirect calorimetry, the validity of smartphone monitoring is currently challenged by poor intermonitor reliability between smartphone brands/versions, heterogeneity in protocols used for validation, the sparsity of studies, and the need to address the effects of smartphone placement.

Stålesen and Westergren shared first authorship. Stålesen, Herman Hansen, and Berntsen are with the Department of Sport Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway. Westergren is with the Department of Health and Nursing Science, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway.

Westergren (thomas.westergren@uia.no) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 345 KB)
  • 1.

    Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126131. PubMed ID: 3920711

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. Med Sci Sports Exerc. 1999;31(suppl 1):S646662. doi:10.1097/00005768-199911001-00025.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. Cmaj. 2006;174(6):801809. PubMed ID: 16534088 doi:10.1503/cmaj.051351

  • 4.

    Warburton DE, Bredin SS. Reflections on physical activity and health: what should we recommend? Can J Cardiol. 2016;32(4):495504. PubMed ID: 26995692 doi:10.1016/j.cjca.2016.01.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ekelund U, Tarp J, Steene-Johannessen J, et al. Dose–response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. BMJ. 2019;366:l4570. PubMed ID: 31434697 doi:10.1136/bmj.l4570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Nechvátal P, Eliášová A, Kiško A, Derňárová Ľ, Kundraciková Ľ. A scoping review of physical activity measurement tools in free-living conditions. Medicina Fluminensis. 2018;54(2):118128. doi:10.21860/medflum2018_198229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):18211845. PubMed ID: 28303543 doi:10.1007/s40279-017-0716-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Silver L. Smartphone ownership is growing rapidly around the world, but not always equally. 2019; https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/. Accessed 03.01, 2020.

    • Export Citation
  • 9.

    Charvátová H, Procházka A, Vyšata O. Motion assessment for accelerometric and heart rate cycling data analysis. Sensors. 2020;20(5):1523. doi:10.3390/s20051523

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Pande A, Zhu J, Das AK, Zeng Y, Mohapatra P, Han JJ. Using smartphone sensors for improving energy expenditure estimation. IEEE J Transl Eng Health Med. 2015;3:112. doi:10.1109/JTEHM.2015.2480082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(suppl):S498S516. doi:10.1097/00005768-200009001-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Guidoux R, Duclos M, Fleury G, et al. A smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditions. J Biomed Inform. 2014;52:271278. PubMed ID: 25048352 doi:10.1016/j.jbi.2014.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Liu F, Kong X, Cao J, et al. Mobile phone intervention and weight loss among overweight and obese adults: a meta-analysis of randomized controlled trials. Am J Epidemiol. 2015;181(5):337348. PubMed ID: 25673817 doi:10.1093/aje/kwu260

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Carneiro S, Silva J, Aguiar B, et al. Accelerometer-based methods for energy expenditure using the smartphone. Paper presented at: Medical Measurements and Applications (MeMeA), 2015 IEEE International Symposium on; May 7–9, 2015.

    • Export Citation
  • 15.

    Ruiz-Zafra A, Orantes-Gonzalez E, Noguera M, Benghazi K, Heredia-Jimenez J. A comparative study on the suitability of smartphones and imu for mobile, unsupervised energy expenditure calculi. Sensors. 2015;15(8):1827018286. doi:10.3390/s150818270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kos A, Tomazic S, Umek A. Evaluation of smartphone inertial sensor performance for cross-platform mobile applications. Sensors. 2016;16(4):477. doi:10.3390/s16040477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Klein I. Smartphone location recognition: a deep learning-based approach. Sensors. 2020;20(1):214. doi:10.3390/s20010214

  • 18.

    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. PubMed ID: 19621072 doi:10.1371/journal.pmed.1000097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Donaire-Gonzalez D, de Nazelle A, Seto E, Mendez M, Nieuwenhuijsen MJ, Jerrett M. Comparison of physical activity measures using mobile phone-based CalFit and Actigraph. J Med Internet Res. 2013;15(6):e111. doi:10.2196/jmir.2470

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Manohar CU, McCrady SK, Fujiki Y, Pavlidis IT, Levine JA. Evaluation of the accuracy of a triaxial accelerometer embedded into a cell phone platform for measuring physical activity. J Obes Weight Loss Ther. 2011;1(106):3309. PubMed ID: 23730539

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cvetković B, Kaluža B, Milić R, Luštrek M. Towards human energy expenditure estimation using smart phone inertial sensors. Paper presented at: International Joint Conference on Ambient Intelligence 2013.

    • Export Citation
  • 22.

    Lee J-M, Kim Y, Kwon Y-S, Derrick TR, Welk GJ. Calibration of built-in accelerometer using a commercially available smartphone. Paper presented at: American College of Sports Medicine, May 30, 2014.

    • Export Citation
  • 23.

    Rodriguez VH, Medrano C, Plaza I, Corella C, Abarca A, Julian JA. Estimating the physical activity with smartphones: analysis of the device position and comparison with GT3X+ actigraph. Paper presented at: Ambient Intelligence-Software and Applications–7th International Symposium on Ambient Intelligence (ISAmI 2016). 2016.

    • Export Citation
  • 24.

    Guidoux R, Duclos M, Fleury G, et al. The eMouveRecherche application competes with research devices to evaluate energy expenditure, physical activity and still time in free-living conditions. J Biom Inform. 2017;69:128134. doi:10.1016/j.jbi.2017.04.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hekler EB, Buman MP, Grieco L, et al. Validation of physical activity tracking via android smartphones compared to ActiGraph accelerometer: laboratory-based and free-living validation studies. JMIR Mhealth Uhealth. 2015;3(2):e36. PubMed ID: 25881662 doi:10.2196/mhealth.3505

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Maddison R, Gemming L, Monedero J, et al. Quantifying human movement using the Movn smartphone app: validation and field study. JMIR MHealth UHealth. 2017;5(8):e122. PubMed ID: 28818819 doi:10.2196/mhealth.7167

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 107 107 107
Full Text Views 8 8 8
PDF Downloads 5 5 5