Acute Effects of Water-Based Concurrent Training Intrasession Exercise Sequences on Energy Expenditure in Young Women

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: To compare the acute effects of water-based aerobic–resistance and resistance–aerobic concurrent training (CT) sessions on energy expenditure (EE) during and postexercise in young women. Methods: Nine active women (24 [3] y; 60 [5] kg) completed 4 sessions: (1) familiarization, (2) aquatic maximal test to determine the heart rate corresponding to the anaerobic threshold, (3) CT protocol with aerobic–resistance sequence, and (4) CT protocol with resistance–aerobic sequence. Both protocols started and ended with the participants in the supine position for 30 minutes to perform resting and postexercise oxygen consumption measurements. The water-based resistance protocol comprised 4 sets of 15 seconds at maximal velocity, and the water-based aerobic protocol was performed at a continuous intensity (heart rate corresponding to the anaerobic threshold). EE measurements were calculated based on oxygen consumption and the corresponding caloric equivalent. Paired t test was used to compare the EE values between the water-based CT intrasession exercise sequences (α = .05). Results: There was no difference between the water-based aerobic–resistance and resistance–aerobic in total EE (330.78 vs 329.56 kcal; P = .96), EE per minute (7.35 vs 7.32 kcal·min−1; P = .96), and postexercise EE (63.65 vs 59.92 kcal; P = .50). Conclusions: The intrasession exercise sequence during water-based CT had no influence on the EE in young women.

The authors are with the Department of Sports, Physical Education School, Federal University of Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil.

Silva (marianaesef@hotmail.com) is corresponding author.
  • 1.

    Burtscher M. Physical inactivity and chronic diseases. Ther Umsch. 2015;72(5):293–301. PubMed ID: 26098067 doi:10.1024/0040-5930/a000679

  • 2.

    Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143–1211. doi:10.1002/cphy.c110025

  • 3.

    Panissa VLG, de Bertuzzi RCM, de Lira FS, Júlio UF, Franchini E. Exercício concorrente: análise do efeito agudo da ordem de execução sobre o gasto energético total. Rev Bras Med do Esporte. 2009;15(2):127–131. doi:10.1590/S1517-86922009000200009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    American College of Sports Medicine. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. doi:10.1249/MSS.0b013e318213fefb

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Alberton CL, Tartaruga MP, Pinto SS, et al. Vertical ground reaction force during water exercises performed at different intensities. Int J Sports Med. 2013;34(10):881–887. PubMed ID: 23549690 doi:10.1055/s-0032-1331757

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cassady SL, Nielsen DH. Cardiorespiratory responses of healthy subjects to calisthenics performed on land versus in water. Phys Ther. 1992;72(7):532–538. PubMed ID: 1409885 doi:10.1093/ptj/72.7.532

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Šrámek P, Šimečková M, Janský L, Šavlíková J, Vybíral S. Human physiological responses to immersion into water of different temperatures. Eur J Appl Physiol. 2000;81(5):436–442. PubMed ID: 10751106 doi:10.1007/s004210050065

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kruel LFM, Beilke DD, Kanitz AC, et al. Cardiorespiratory responses to stationary running in water and on land. J Sports Sci Med. 2013;12(3):594–600. PubMed ID: 24149170

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Yoo J, Lim K-B, Lee H-J, Kwon Y-G. Cardiovascular response during submaximal underwater treadmill exercise in stroke patients. Ann Rehabil Med. 2014;38(5):628–636. PubMed ID: 25379492 doi:10.5535/arm.2014.38.5.628

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Simmons EE, Bergeron ER, Florian JP. The impact of repetitive long-duration water immersion on vascular function. PLoS One. 2017;12(7):e0181673. PubMed ID: 28750006 doi:10.1371/journal.pone.0181673

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rodriguez D, Jonato Prestes J, Rica R, et al. Hypotensive response after water-walking and land-walking exercise sessions in healthy trained and untrained women. Int J Gen Med. 2011;4:549–554. PubMed ID: 21887107 doi:10.2147/IJGM.S23094

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Yázigi F, Espanha M, Vieira F, Messier SP, Monteiro C, Veloso AP. The PICO project: aquatic exercise for knee osteoarthritis in overweight and obese individuals. BMC Musculoskelet Disord. 2013;14:320. doi:10.1186/1471-2474-14-320

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    De Souza AS, Pinto SS, Kanitz AC, et al. Physiological comparisons between aquatic resistance training protocols with and without equipment. J Strength Cond Res. 2012;26(1):276–283. PubMed ID: 22193342 doi:10.1519/JSC.0b013e31821f48bf

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kruel LFM, Posser MS, Alberton CL, Pinto SS, Oliveira AS. Comparison of energy expenditure between continuous and interval water aerobic routines. Int J Aquat Res Educ. 2009;3:186–196.

    • Search Google Scholar
    • Export Citation
  • 15.

    Schaun GZ, Pinto SS, De AB, Praia C, Alberton CL, Schaun GZ. Energy expenditure and EPOC between water-based high-intensity interval training and moderate-intensity continuous training sessions in healthy women and moderate-intensity continuous training sessions in healthy women. J Sports Sci. 2018;36(17):2053–2060. doi:10.1080/02640414.2018.1435967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cadore EL, Pinto RS, Lhullier FLR, et al. Physiological effects of concurrent training in elderly men. Int J Sports Med. 2010;31(10):689–697. PubMed ID: 20617484 doi:10.1055/s-0030-1261895

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Silva R, Cadore E, Kothe G, et al. Concurrent training with different aerobic exercises. Int J Sports Med. 2012;33(8):627–634. PubMed ID: 22562730 doi:10.1055/s-0031-1299698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pinto SS, Cadore EL, Alberton CL, et al. Effects of intra-session exercise sequence during water-based concurrent training. Int J Sports Med. 2014;35(1):41–48. PubMed ID: 23771835 doi:10.1055/s-0033-1345129

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pinto SS, Alberton CL, Bagatini NC, et al. Neuromuscular adaptations to water-based concurrent training in postmenopausal women: effects of intrasession exercise sequence. Age. 2015;37(1):9751. doi:10.1007/s11357-015-9751-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Alves J, Saavedra F, Simão R, et al. Does aerobic and strength exercise sequence in the same session affect the oxygen uptake during and postexercise? J Strength Cond Res. 2012;26(7):1872–1878. doi:10.1519/JSC.0b013e318238e852

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pinto SS, Alberton CL, Cadore EL, et al. Water-based concurrent training improves peak oxygen uptake, rate of force development, jump height, and neuromuscular economy in young women. J Strength Cond Res. 2015;29(7):1846–1854. PubMed ID: 25559906 doi:10.1519/JSC.0000000000000820

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pinto SS, Umpierre D, Ferreira HK, Nunes GN, Ferrari R, Alberton CL. Postexercise hypotension during different water-based concurrent training intrasession sequences in young women. J Am Soc Hypertens. 2017;11(10):653–659. PubMed ID: 28865866 doi:10.1016/j.jash.2017.08.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Antunes AH, Alberton CL, Finatto P, et al. Active female maximal and anaerobic threshold cardiorespiratory responses to six different water aerobics exercises. Res Q Exerc Sport. 2015;86(3):267–273. PubMed ID: 25774975 doi:10.1080/02701367.2015.1012577

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Alberton CL, Pinto SS, Antunes AH, et al. Maximal and ventilatory thresholds cardiorespiratory responses to three water aerobic exercises compared with treadmill on land. J Strength Cond Res. 2014;28(6):1679–1687. PubMed ID: 24172723 doi:10.1519/JSC.0000000000000304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Alberton CL, Antunes AH, Beilke DD, et al. Maximal and ventilatory thresholds of oxygen uptake and rating of perceived exertion responses to water aerobic exercises. J Strength Cond Res. 2013;27(7):1897–1903. PubMed ID: 23037612 doi:10.1519/JSC.0b013e3182736e47

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Alberton CL, Kanitz AC, Pinto SS, et al. Determining the anaerobic threshold in water aerobic exercises: a comparison between the heart rate deflection point and the ventilatory method. J Sports Med Phys Fitness. 2013;53:358–367. PubMed ID: 23828283 doi:10.13140/RG.2.1.5129.4169

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pinto SS, Brasil RM, Alberton CL, et al. Noninvasive determination of anaerobic threshold based on the heart rate deflection point in water cycling. J Strength Cond Res. 2016;30(2):518–524. PubMed ID: 26200195 doi:10.1519/JSC.0000000000001099

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wilmore JH, Parr RB, Ward P, et al. Energy cost of circuit weight training. Med Sci Sports. 1978;10(2):75–78. PubMed ID: 692305

  • 29.

    Dankel SJ, Mouser JG, Mattocks KT, et al. The widespread misuse of effect sizes. J Sci Med Sport. 2017;20(5):446–450. PubMed ID: 28277241 doi:10.1016/j.jsams.2016.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Nikolai AL, Novotny BA, Bohnen CL, Schleis KM, Dalleck LC. Cardiovascular and metabolic responses to water aerobics exercise in middle-age and older adults. J Phys Act Health. 2009;6(3):333–338. PubMed ID: 19564662 doi:10.1123/jpah.6.3.333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    de Lira FS, de Oliveira RSF, Julio UF, Franchini E. Consumo de oxigênio pós-exercícios de força e aeróbio: efeito da ordem de execução. Rev Bras Med do Esporte. 2007;13(6):402–406. doi:10.1590/S1517-86922007000600009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Di Blasio A, Gemello E, Di Iorio A, et al. Order effects of concurrent endurance and resistance training on post-exercise response of non-trained women. J Sports Sci Med. 2012;11(3):393–399. PubMed ID: 24149345

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 181 181 146
Full Text Views 3 3 2
PDF Downloads 4 4 3