Modifiable Physical Factors Associated With Physical Functioning for Patients Receiving Dialysis: A Systematic Review

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $115.00

1 year subscription

USD  $153.00

Student 2 year subscription

USD  $218.00

2 year subscription

USD  $285.00

Background: Patients receiving dialysis have reduced physical function, which is associated with unfavorable clinical outcomes and decreased quality of life. The authors aimed to identify and explore modifiable physical factors associated with physical function for patients receiving dialysis. Methods: Searches were performed in MEDLINE, Embase, Ovid Emcare, and The Cochrane Library in October 2018. Etiological studies involving dialysis populations that report association or predictive statistics between a modifiable physical factor and physical function were eligible for inclusion. Predictor variables were (1) modifiable via exercise and (2) considered an impairment in the International Classification of Functioning, Disability and Health. Results: Of 5384 titles screened, 23 studies were included. Thirteen studies focused on physical activity levels and muscle strength and the relationship with physical function while 2 studies investigated sedentary behavior. Twenty-one studies focused on hemodialysis populations. Studies related to physical activity levels displayed a moderately strong relationship with physical function, whereas muscle strength displayed a predominantly weak to moderate relationship. Conclusions: Physical activity levels, sedentary behavior levels, and muscle strength are related to physical function status for patients receiving dialysis. There is a need for robust longitudinal data to confirm the results of this investigation and for more focus on populations receiving peritoneal dialysis.

Tarca, Wycherley, and Ferrar are with the Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, SA, Australia. Bennett and Meade are with the Central Adelaide Local Health Network, Adelaide, SA, Australia.

Tarca (brett.tarca@mymail.unisa.edu.au) is corresponding author.
  • 1.

    Levin A, Tonelli M, Bonventre J, et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet. 2017;390(10105):18881917. PubMed ID: 28434650 doi:10.1016/S0140-6736(17)30788-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Liyanage T, Ninomiya T, Jha V, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385(9981):19751982. PubMed ID: 25777665 doi:10.1016/S0140-6736(14)61601-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Sinnakirouchenan R, Holley JL. Peritoneal dialysis versus hemodialysis: risks, benefits, and access issues. Adv Chronic Kidney Dis. 2011;18(6):428432. PubMed ID: 22098661 doi:10.1053/j.ackd.2011.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Heiwe S, Jacobson SH. Exercise training for adults with chronic kidney disease. Cochrane Database Syst Rev. 2011;(10):CD003236.

  • 5.

    Roshanravan B, Robinson-Cohen C, Patel KV, et al. Association between physical performance and all-cause mortality in CKD. J Am Soc Nephrol. 2013;24(5):822830. PubMed ID: 23599380 doi:10.1681/ASN.2012070702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Avesani CM, Carrero JJ, Axelsson J, Qureshi AR, Lindholm B, Stenvinkel P. Inflammation and wasting in chronic kidney disease: partners in crime. Kidney Int. 2006;70:S8S13. doi:10.1038/sj.ki.5001969

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Koufaki P, Kouidi E. Current best evidence recommendations on measurement and interpretation of physical function in patients with chronic kidney disease. Sports Med. 2010;40(12):10551074. PubMed ID: 21058751 doi:10.2165/11536880-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Painter P, Marcus RL. Assessing physical function and physical activity in patients with CKD. Clin J Am Soc Nephrol. 2013;8(5):861872. PubMed ID: 23220421 doi:10.2215/CJN.06590712

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Afsar B, Siriopol D, Aslan G, et al. The impact of exercise on physical function, cardiovascular outcomes and quality of life in chronic kidney disease patients: a systematic review. Int Urol Nephrol. 2018;50(5):885904. PubMed ID: 29344881 doi:10.1007/s11255-018-1790-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Johansen KL. Exercise in the end-stage renal disease population. J Am Soc Nephrol. 2007;18(6):18451854. PubMed ID: 17442789 doi:10.1681/ASN.2007010009

  • 11.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. PubMed ID: 19621072 doi:10.1371/journal.pmed.1000097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    World Health Organization. International Classification of Functioning, Disability and health: ICFGeneva, Switzerland: World Health Organization; 2001. http://www.who.int/iris/handle/10665/42407. Accessed February 1, 2019.

    • Search Google Scholar
    • Export Citation
  • 13.

    Rosenberg IH. Sarcopenia: origins and clinical relevance. Clin Geriatr Med. 2011;27(3):337339. PubMed ID: 21824550 doi:10.1016/j.cger.2011.03.003

  • 14.

    Maughan RJ, Nimmo MA. The influence of variations in muscle fibre composition on muscle strength and cross-sectional area in untrained males. J Physiol. 1984;351:299311. PubMed ID: 6747868 doi:10.1113/jphysiol.1984.sp015246

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126131. PubMed ID: 3920711

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Laboratories ATSCoPSfCPF. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111117. doi:10.1164/ajrccm.166.1.at1102

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142148. PubMed ID: 1991946 doi:10.1111/j.1532-5415.1991.tb01616.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85M94. PubMed ID: 8126356 doi:10.1093/geronj/49.2.M85

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473483. PubMed ID: 1593914 doi:10.1097/00005650-199206000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wells GSB, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analysis. Ottawa, Canada: Ottawa Hospital Research Institute; 2013. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed February 1, 2019.

    • Search Google Scholar
    • Export Citation
  • 21.

    The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011. 2011. http://handbook.cochrane.org. Accessed February 1, 2019.

    • Search Google Scholar
    • Export Citation
  • 22.

    McPheeters M, Kripalani S, Peterson NB, et al. Quality improvement interventions to address health disparities: closing the quality gap—revisiting the state of the science. Evidence Report/Technology Assessment Web site. 2012. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0049222/pdf/TOC.pdf. Accessed February 20, 2019.

    • Search Google Scholar
    • Export Citation
  • 23.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: L. Erlbaum Associates; 1988.

  • 24.

    Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):17851805. PubMed ID: 27683581 doi:10.1177/0962280216669183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135. doi:10.1186/1471-2288-14-135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-Analysis, Chapter 7: Converting Among Effect Sizes. Chichester, UK: Wiley; 2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Alston H, Burns A, Davenport A. Loss of appendicular muscle mass in haemodialysis patients is associated with increased self-reported depression, anxiety and lower general health scores. Nephrology. 2018;23(6):546551. PubMed ID: 28545164 doi:10.1111/nep.13075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Beberashvili I, Azar A, Sinuani I, et al. Bioimpedance phase angle predicts muscle function, quality of life and clinical outcome in maintenance hemodialysis patients. Eur J Clin Nutr. 2014;68(6):683689. PubMed ID: 24736681 doi:10.1038/ejcn.2014.67

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Blake C, O’Meara YM. Subjective and objective physical limitations in high-functioning renal dialysis patients. Nephrol Dial Transplant. 2004;19(12):31243129. PubMed ID: 15494354 doi:10.1093/ndt/gfh538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Brenner I, Brohart K. Weekly energy expenditure and quality of life in hemodialysis patients. Cannt J. 2008;18(4):3640. PubMed ID: 19175191

  • 31.

    Brodin E, Ljungman S, Hedberg M, Sunnerhagen KS. Physical activity, muscle performance and quality of life in patients treated with chronic peritoneal dialysis. Scand J Urol Nephrol. 2001;35(1):7178. PubMed ID: 11291692 doi:10.1080/00365590151030886

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Bucar Pajek M, Leskosek B, Vivoda T, Svilan K, Cuk I, Pajek J. Integrative examination of motor abilities in dialysis patients and selection of tests for a standardized physical function assessment. Therap Apher Dial. 2016;20(3):286294. doi:10.1111/1744-9987.12439

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Cheema B, Abas H, Smith B, et al. Investigation of skeletal muscle quantity and quality in end-stage renal disease. Nephrology. 2010;15(4):454463. doi:10.1111/j.1440-1797.2009.01261.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Cupisti A, D’Alessandro C, Finato V, et al. Assessment of physical activity, capacity and nutritional status in elderly peritoneal dialysis patients. BMC Nephrol. 2017;18(1):180. PubMed ID: 28558794 doi:10.1186/s12882-017-0593-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    da Costa Rosa CS, Nishimoto DY, Freitas Junior IF, Ciolac EG, Monteiro HL. Factors associated with levels of physical activity in chronic kidney disease patients undergoing hemodialysis: the role of dialysis versus nondialysis day. J Phys Act Health. 2017;14(9):726732. PubMed ID: 28513257 doi:10.1123/jpah.2016-0715

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Gomes EP, Reboredo MM, Carvalho EV, et al. Physical activity in hemodialysis patients measured by triaxial accelerometer. Biomed Res Int. 2015;2015:645645. PubMed ID: 26090432 doi:10.1155/2015/645645

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hotta C, Hiraki K, Wakamiya A, et al. Relation of physical function and physical activity to sarcopenia in hemodialysis patients: a preliminary study. Int J Cardiol. 2015;191:198200. PubMed ID: 25974194 doi:10.1016/j.ijcard.2015.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Johansen KL, Painter P, Kent-Braun JA, et al. Validation of questionnaires to estimate physical activity and functioning in end-stage renal disease. Kidney Int. 2001;59(3):11211127. PubMed ID: 11231369 doi:10.1046/j.1523-1755.2001.0590031121.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Johansen KL, Chertow GM, da Silva M, Carey S, Painter P. Determinants of physical performance in ambulatory patients on hemodialysis. Kidney Int. 2001;60(4):15861591. PubMed ID: 11576377 doi:10.1046/j.1523-1755.2001.00972.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Johansen KL, Painter P, Delgado C, Doyle J. Characterization of physical activity and sitting time among patients on hemodialysis using a new physical activity instrument. J Ren Nutr. 2015;25(1):2530. PubMed ID: 25213326 doi:10.1053/j.jrn.2014.06.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kang SH, Lee HS, Lee S, Cho JH, Kim JC. Comparison of muscle mass indices using computed tomography or dual X-Ray absorptiometry for predicting physical performance in hemodialysis patients. Kidney Blood Press Res. 2017;42(6):11191127. PubMed ID: 29224021 doi:10.1159/000485779

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kang SH, Do JY, Jeong HY, Lee SY, Kim JC. The clinical significance of physical activity in maintenance dialysis patients. Kidney Blood Press Res. 2017;42(3):575586. PubMed ID: 29017151 doi:10.1159/000480674

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Kim JC, Shapiro BB, Zhang M, et al. Daily physical activity and physical function in adult maintenance hemodialysis patients. J Cachexia Sarcopenia Muscle. 2014;5(3):209220. PubMed ID: 24777474 doi:10.1007/s13539-014-0131-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Kim SK, Park HJ, Yang DH, Jeong HY. Influences on the performance based frailty of physical performance, exercise self-efficacy, decisional balance, and health related quality of life in adults undergoing hemodialysis [in Korean]. Korean J Adult Nurs. 2018;30(2):149160. doi:10.7475/kjan.2018.30.2.149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Kutsuna T, Matsunaga A, Matsumoto T, et al. Physical activity is necessary to prevent deterioration of the walking ability of patients undergoing maintenance hemodialysis. Therap Apher Dial. 2010;14(2):193200. doi:10.1111/j.1744-9987.2009.00750.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Li M, Li L, Fan X. Patients having haemodialysis: physical activity and associated factors. J Adv Nurs. 2010;66(6):13381345. PubMed ID: 20384636 doi:10.1111/j.1365-2648.2010.05283.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Li YN, Shapiro B, Kim JC, et al. Association between quality of life and anxiety, depression, physical activity and physical performance in maintenance hemodialysis patients. Chronic Dis Transl Med. 2016;2(2):110119. PubMed ID: 29063031 doi:10.1016/j.cdtm.2016.09.004

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Nakamura M, Yamabe H, Kitajima M, et al. Physical activity levels of patients undergoing hemodialysis. Dial Transplant. 2010;39(9):386390. doi:10.1002/dat.20486

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Wang AY, Sherrington C, Toyama T, et al. Muscle strength, mobility, quality of life and falls in patients on maintenance haemodialysis: a prospective study. Nephrology. 2017;22(3):220227. PubMed ID: 26890468 doi:10.1111/nep.12749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Marcus RL, LaStayo PC, Ikizler TA, et al. Low physical function in maintenance hemodialysis patients is independent of muscle mass and comorbidity. J Ren Nutr. 2015;25(4):371375. PubMed ID: 25836339 doi:10.1053/j.jrn.2015.01.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Bucar Pajek M, Pajek J. Characterization of deficits across the spectrum of motor abilities in dialysis patients and the impact of sarcopenic overweight and obesity. Clin Nutr. 2018;37(3):870877. PubMed ID: 28343799 doi:10.1016/j.clnu.2017.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Corcoran MP, Chui KKH, White DK, et al. Accelerometer assessment of physical activity and its association with physical function in older adults residing at assisted care facilities. J Nutr Health Aging. 2016;20(7):752758. PubMed ID: 27499309 doi:10.1007/s12603-015-0640-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Cederberg KL, Motl RW, McAuley E. Physical activity, sedentary behavior, and physical function in older adults with multiple sclerosis. J Aging Phys Act. 2018;26(2):177182. PubMed ID: 28605269 doi:10.1123/japa.2016-0358

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Thiel DM, Al Sayah F, Vallance JK, Johnson ST, Johnson JA. Association between physical activity and health-related quality of life in adults with type 2 diabetes. Can J Diabetes. 2017;41(1):5863. PubMed ID: 27692960 doi:10.1016/j.jcjd.2016.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA accelerometer. Med Sci Sports Exerc. 2011;43(6):10851093. PubMed ID: 21088628 doi:10.1249/MSS.0b013e31820513be

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Sylvia LG, Bernstein EE, Hubbard JL, Keating L, Anderson EJ. Practical guide to measuring physical activity. J Acad Nutr Diet. 2014;114(2):199208. PubMed ID: 24290836 doi:10.1016/j.jand.2013.09.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Paul SS, Tiedemann A, Hassett LM, et al. Validity of the Fitbit activity tracker for measuring steps in community-dwelling older adults. BMJ Open Sport Exerc Med. 2015;1(1):e000013. PubMed ID: 27900119 doi:10.1136/bmjsem-2015-000013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Chen JLT, Godfrey S, Ng TT, et al. Effect of intra-dialytic, low-intensity strength training on functional capacity in adult haemodialysis patients: a randomized pilot trial. Nephrol Dial Transplant. 2010;25(6):19361943. PubMed ID: 20100734 doi:10.1093/ndt/gfp739

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Koh KP, Fassett RG, Sharman JE, Coombes JS, Williams AD. Effect of intradialytic versus home-based aerobic exercise training on physical function and vascular parameters in hemodialysis patients: a randomized pilot study. Am J Kidney Dis. 2010;55(1):8899. PubMed ID: 19932545 doi:10.1053/j.ajkd.2009.09.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Koh KP, Fassett RG, Sharman JE, Coombes JS, Williams AD. Intradialytic versus home based exercise training in hemodialysis patients: a randomised controlled trial. BMC Nephrol. 2009;10:2. PubMed ID: 19178747 doi:10.1186/1471-2369-10-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Koufaki P, Mercer TH, Naish PF. Effects of exercise training on aerobic and functional capacity of end-stage renal disease patients. Clin Physiol Funct Imaging. 2002;22(2):115124. PubMed ID: 12005153 doi:10.1046/j.1365-2281.2002.00405.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Feinglass J, Song J, Semanik P, et al. Association of functional status with changes in physical activity: insights from a behavioral intervention for participants with arthritis. Arch Phys Med Rehabil. 2012;93(1):172175. PubMed ID: 22200399 doi:10.1016/j.apmr.2011.06.037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Michael K, Goldberg AP, Treuth MS, Beans J, Normandt P, Macko RF. Progressive adaptive physical activity in stroke improves balance, gait, and fitness: preliminary results. Top Stroke Rehabil. 2009;16(2):133139. PubMed ID: 19581199 doi:10.1310/tsr1602-133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Austin J, Williams R, Ross L, Moseley L, Hutchison S. Randomised controlled trial of cardiac rehabilitation in elderly patients with heart failure. Eur J Heart Fail. 2005;7(3):411417. PubMed ID: 15718182 doi:10.1016/j.ejheart.2004.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Smart NA, Williams AD, Levinger I, et al. Exercise & Sports Science Australia (ESSA) position statement on exercise and chronic kidney disease. J Sci Med Sport. 2013;16(5):406411. PubMed ID: 23434075 doi:10.1016/j.jsams.2013.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Hall M, Wrigley TV, Kasza J, et al. Cross-sectional association between muscle strength and self-reported physical function in 195 hip osteoarthritis patients. Semin Arthritis Rheum. 2017;46(4):387394. PubMed ID: 27665019 doi:10.1016/j.semarthrit.2016.08.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    El Ghoch M, Rossi AP, Calugi S, et al. Physical performance measures in screening for reduced lean body mass in adult females with obesity. Nutr Metab Cardiovasc Dis. 2018;28(9):917921. PubMed ID: 30017438 doi:10.1016/j.numecd.2018.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Cohen JW, Ivanova TD, Brouwer B, Miller KJ, Bryant D, Garland SJ. Do performance measures of strength, balance, and mobility predict quality of life and community reintegration after stroke? Arch Phys Med Rehabil. 2018;99(4):713719. PubMed ID: 29317222 doi:10.1016/j.apmr.2017.12.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Cheema BS, Chan D, Fahey P, Atlantis E. Effect of progressive resistance training on measures of skeletal muscle hypertrophy, muscular strength and health-related quality of life in patients with chronic kidney disease: a systematic review and meta-analysis. Sports Med. 2014;44(8):11251138. PubMed ID: 24696049 doi:10.1007/s40279-014-0176-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Clarkson MJ, Bennett PN, Fraser SF, Warmington SA. Exercise interventions for improving objective physical function in patients with end-stage kidney disease on dialysis: a systematic review and meta-analysis. Am J Physiol Renal Physiol. 2019;316(5):F856F872. PubMed ID: 30759022 doi:10.1152/ajprenal.00317.2018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    De Lima MC, De Lima Cicotoste C, Da Silva Cardoso K, Forgiarini Junior LA, Monteiro MB, Dias AS. Effect of exercise performed during hemodialysis: strength versus aerobic. Ren Fail. 2013;35(5):697704. PubMed ID: 23560491 doi:10.3109/0886022X.2013.780977

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Esteve Simo V, Junque A, Fulquet M, et al. Complete low-intensity endurance training programme in haemodialysis patients: improving the care of renal patients. Nephron Clin Pract. 2014;128(3–4):387393. doi:10.1159/000369253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Matsufuji S, Shoji T, Yano Y, et al. Effect of chair stand exercise on activity of daily living: a randomized controlled trial in hemodialysis patients. J Ren Nutr. 2015;25(1):1724. PubMed ID: 25194621 doi:10.1053/j.jrn.2014.06.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Pellizzaro CO, Thome FS, Veronese FV. Effect of peripheral and respiratory muscle training on the functional capacity of hemodialysis patients. Ren Fail. 2013;35(2):189197. PubMed ID: 23199095 doi:10.3109/0886022X.2012.745727

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    van Vilsteren MC, de Greef MH, Huisman RM. The effects of a low-to-moderate intensity pre-conditioning exercise programme linked with exercise counselling for sedentary haemodialysis patients in The Netherlands: results of a randomized clinical trial. Nephrol Dial Transplant. 2005;20(1):141146. PubMed ID: 15522901 doi:10.1093/ndt/gfh560

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Cheema B, Abas H, Smith B, et al. Progressive exercise for anabolism in kidney disease (PEAK): a randomized, controlled trial of resistance training during hemodialysis. J Am Soc Nephrol. 2007;18(5):15941601. PubMed ID: 17409306 doi:10.1681/ASN.2006121329

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    DePaul V, Moreland J, Eager T, Clase CM. The effectiveness of aerobic and muscle strength training in patients receiving hemodialysis and EPO: a randomized controlled trial. Am J Kidney Dis. 2002;40(6):12191229. PubMed ID: 12460041 doi:10.1053/ajkd.2002.36887

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Johansen KL, Painter PL, Sakkas GK, Gordon P, Doyle J, Shubert T. Effects of resistance exercise training and nandrolone decanoate on body composition and muscle function among patients who receive hemodialysis: a randomized, controlled trial. J Am Soc Nephrol. 2006;17(8):23072314. PubMed ID: 16825332 doi:10.1681/ASN.2006010034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Medeiros AIC, Brandao DC, Souza RJP, et al. Effects of daily inspiratory muscle training on respiratory muscle strength and chest wall regional volumes in haemodialysis patients: a randomised clinical trial. Disabil Rehabil. 2019;41(26):31733180. doi:10.1080/09638288.2018.1485181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Song WJ, Sohng KY. Effects of progressive resistance training on body composition, physical fitness and quality of life of patients on hemodialysis. J Korean Acad Nurs. 2012;42(7):947956. PubMed ID: 23377590 doi:10.4040/jkan.2012.42.7.947

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Thompson S, Klarenbach S, Molzahn A, et al. Randomised factorial mixed method pilot study of aerobic and resistance exercise in haemodialysis patients: DIALY-SIZE! BMJ Open. 2016;6(9):e012085. PubMed ID: 27601500 doi:10.1136/bmjopen-2016-012085

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Haarbo J, Gotfredsen A, Hassager C, Christiansen C. Validation of body composition by dual energy X-ray absorptiometry (DEXA). Clin Physiol. 1991;11(4):331341. PubMed ID: 1914437 doi:10.1111/j.1475-097X.1991.tb00662.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998;85(1):115122. doi:10.1152/jappl.1998.85.1.115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84.

    Konings CJAM, Kooman JR, Schonck M, et al. Influence of fluid status on techniques used to assess body composition in peritoneal dialysis patients. Perit Dial Int. 2003;23(2):184190. PubMed ID: 12713087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Formica C, Atkinson M, Nyulasi I, McKay J, Heale W, Seeman E. Body composition following hemodialysis: Studies using dual-energy X-ray absorptiometry and bioelectrical impedance analysis. Osteoporos Int. 1993;3(4):192197. PubMed ID: 8338974 doi:10.1007/BF01623675

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Dixon CB, Ramos L, Fitzgerald E, Reppert D, Andreacci JL. The effect of acute fluid consumption on measures of impedance and percent body fat estimated using segmental bioelectrical impedance analysis. Eur J Clin Nutr. 2009;63(9):11151122. PubMed ID: 19536161 doi:10.1038/ejcn.2009.42

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Jain AK, Blake P, Cordy P, Garg AX. Global trends in rates of peritoneal dialysis. J Am Soc Nephrol. 2012;23(3):533544. PubMed ID: 22302194 doi:10.1681/ASN.2011060607

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3821 3820 1903
Full Text Views 9 9 5
PDF Downloads 7 7 2