Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Drinking water is recommended before and after exercise to avoid dehydration. However, water ingestion may mitigate or prevent postexercise hypotension. This study investigated the effects of intentional hydration on postaerobic exercise hemodynamics and autonomic modulation. Methods: A total of 18 young men randomly underwent 4 experimental sessions as follows: (1) control with intentional hydration (1 L of water in the previous night, 500 mL 60 min before the intervention, and 1 mL for each 1 g of body mass lost immediately after the intervention); (2) control without intentional hydration (ad libitum water ingestion before the intervention); (3) exercise (cycle ergometer, 45 min, 50% of VO2peak) with intentional hydration; and (4) exercise without intentional hydration. Hemodynamic and autonomic parameters were measured before and after the interventions and were compared by 3-way analysis of variance. Results: Intentional hydration did not change any postexercise hemodynamic nor autonomic response. Exercise decreased systolic blood pressure and stroke volume (−4.1 [0.8] mm Hg and −4.9 [1.5] mL, P < .05), while increased cardiac sympathovagal balance (0.3 [0.3], P < .05) during the recovery. In addition, it abolished the increase in diastolic blood pressure and the decrease in heart rate observed in the control sessions. Conclusion: Intentional hydration does not modify the hypotensive effect promoted by previous aerobic exercise and did not alter its hemodynamic and autonomic mechanisms.

Lobo, Silva Junior, Medina, Costa, Tinucci, and Forjaz are with the Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil. Queiroz is with the Physical Education Department, Federal University of Juiz de Fora, Minas Gerais, Brazil.

Forjaz (cforjaz@usp.br) is corresponding author.
  • 1.

    Carpio-Rivera E, Moncada-Jimenez J, Salazar-Rojas W, Solera-Herrera A. Acute effects of exercise on blood pressure: a meta-analytic investigation. Arq Bras Cardiol. 2016;106(5):422433. PubMed ID: 27168471

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kelley GA, Kelley KA, Tran ZV. Aerobic exercise and resting blood pressure: a meta-analytic review of randomized, controlled trials. Prev Cardiol. 2001;4(2):7380. PubMed ID: 11828203 doi:10.1111/j.1520-037X.2001.00529.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Brito LC, Fecchio RY, Pecanha T, Andrade-Lima A, Halliwill JR, Forjaz CLM. Postexercise hypotension as a clinical tool: a “single brick” in the wall. J Am Soc Hypertens. 2018;12(12):e59e64. PubMed ID: 30425018 doi:10.1016/j.jash.2018.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Luttrell MJ, Halliwill JR. Recovery from exercise: vulnerable state, window of opportunity, or crystal ball? Front Physiol. 2015;6:204. PubMed ID: 26257656 doi:10.3389/fphys.2015.00204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Greenleaf JE. Problem: thirst, drinking behavior, and involuntary dehydration. Med Sci Sports Exerc. 1992;24(6):645656. PubMed ID: 1602937 doi:10.1249/00005768-199206000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sawka MN, Greenleaf JE. Current concepts concerning thirst, dehydration, and fluid replacement: overview. Med Sci Sports Exerc. 1992;24(6):643644. PubMed ID: 1602936

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377390. PubMed ID: 17277604 doi:10.1249/mss.0b013e31802ca597

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Callegaro CC, Moraes RS, Negrao CE, et al. Acute water ingestion increases arterial blood pressure in hypertensive and normotensive subjects. J Hum Hypertens. 2007;21(7):564570. PubMed ID: 17344908 doi:10.1038/sj.jhh.1002188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Charkoudian N, Halliwill JR, Morgan BJ, Eisenach JH, Joyner MJ. Influences of hydration on post-exercise cardiovascular control in humans. J Physiol. 2003;552(Pt 2):635644. PubMed ID: 14561843 doi:10.1113/jphysiol.2003.048629

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Endo MY, Kajimoto C, Yamada M, et al. Acute effect of oral water intake during exercise on post-exercise hypotension. Eur J Clin Nutr. 2012;66(11):12081213. PubMed ID: 23047713 doi:10.1038/ejcn.2012.139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Brandao Rondon MU, Alves MJ, Braga AM, et al. Postexercise blood pressure reduction in elderly hypertensive patients. J Am Coll Cardiol. 2002;39(4):676682. PubMed ID: 11849868 doi:10.1016/S0735-1097(01)01789-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Brito LC, Queiroz AC, Forjaz CL. Influence of population and exercise protocol characteristics on hemodynamic determinants of post-aerobic exercise hypotension. Braz J Med Biol Res. 2014;47(8):626636. PubMed ID: 25098713 doi:10.1590/1414-431x20143832

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Halliwill JR, Buck TM, Lacewell AN, Romero SA. Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol. 2013;98(1):718. PubMed ID: 22872658 doi:10.1113/expphysiol.2011.058065

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Pecanha T, Paula-Ribeiro M, Campana-Rezende E, Bartels R, Marins JC, de Lima JR. Water intake accelerates parasympathetic reactivation after high-intensity exercise. Int J Sport Nutr Exerc Metab. 2014;24(5):489496. PubMed ID: 24667231 doi:10.1123/ijsnem.2013-0122

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sociedade Brasileira de Cardiologia, Sociedade Brasileira de Hipertensão, Sociedade Brasileira de Nefrologia. VI Brazilian Guidelines of Arterial Hypertension. Arq Bras Cardiol. 2010;95(suppl 1):151. PubMed ID: 21085756

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 1974;37(2):247248. PubMed ID: 4850854 doi:10.1152/jappl.1974.37.2.247

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Jones NL, Campbell EJ, McHardy GJ, Higgs BE, Clode M. The estimation of carbon dioxide pressure of mixed venous blood during exercise. Clin Sci. 1967;32(2):311327. PubMed ID: 6022824

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Turner MJ, Tanaka H, Bassett DR Jr, Fitton TR. The equilibrium CO2 rebreathing method does not affect resting or exercise blood pressure. Med Sci Sports Exerc. 1996;28(7):921925. PubMed ID: 8832548 doi:10.1097/00005768-199607000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):10431065. PubMed ID: 8598068 doi:10.1161/01.CIR.93.5.1043

    • Search Google Scholar
    • Export Citation
  • 20.

    Maughan RJ, Shirreffs SM. Dehydration and rehydration in competative sport. Scand J Med Sci Sports. 2010;20(Suppl 3):4047. doi:10.1111/j.1600-0838.2010.01207.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Santaella DF, Araujo EA, Ortega KC, et al. Aftereffects of exercise and relaxation on blood pressure. Clin J Sport Med. 2006;16(4):341347. PubMed ID: 16858219 doi:10.1097/00042752-200607000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lynn BM, Minson CT, Halliwill JR. Fluid replacement and heat stress during exercise alter post-exercise cardiac haemodynamics in endurance exercise-trained men. J Physiol. 2009;587(Pt 14):36053617. PubMed ID: 19491249 doi:10.1113/jphysiol.2009.171199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Forjaz CL, Cardoso CG Jr, Rezk CC, Santaella DF, Tinucci T. Postexercise hypotension and hemodynamics: the role of exercise intensity. J Sports Med Phys Fitness. 2004;44(1):5462. PubMed ID: 15181391

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Queiroz AC, Sousa JC Jr, Silva ND Jr, et al. Captopril does not potentiate post-exercise hypotension: a randomized crossover study. Int J Sports Med. 2017;38(4):270277. PubMed ID: 28219104 doi:10.1055/s-0042-123044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    De Brito LC, Rezende RA, da Silva Junior ND, et al. Post-exercise hypotension and its mechanisms differ after morning and evening exercise: a randomized crossover study. PloS One. 2015;10(7):e0132458. PubMed ID: 26186444 doi:10.1371/journal.pone.0132458

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mark AL, Mancia G. Cardiopulmonary baroreflex in humans. In: Rowell LB, Shepherd JT, eds. Handbook of Physiology. New York, NY: Oxford; 1996:795813.

    • Search Google Scholar
    • Export Citation
  • 27.

    Dujic Z, Ivancev V, Valic Z, et al. Postexercise hypotension in moderately trained athletes after maximal exercise. Med Sci Sports Exerc. 2006;38(2):318322. PubMed ID: 16531901 doi:10.1249/01.mss.0000187460.73235.3b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hayes PM, Lucas JC, Shi X. Importance of post-exercise hypotension in plasma volume restoration. Acta Physiol Scand. 2000;169(2):115124. PubMed ID: 10848641 doi:10.1046/j.1365-201x.2000.00728.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Forjaz CL, Ramires PR, Tinucci T, et al. Postexercise responses of muscle sympathetic nerve activity and blood flow to hyperinsulinemia in humans. J Appl Physiol. 1999;87(2):824829. PubMed ID: 10444645 doi:10.1152/jappl.1999.87.2.824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Halliwill JR, Dinenno FA, Dietz NM. Alpha-adrenergic vascular responsiveness during postexercise hypotension in humans. J Physiol. 2003;550(Pt 1):279286. PubMed ID: 12766237 doi:10.1113/jphysiol.2003.042838

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Halliwill JR, Taylor JA, Eckberg DL. Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol. 1996;495(Pt 1):279288. doi:10.1113/jphysiol.1996.sp021592

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McCord JL, Halliwill JR. H1 and H2 receptors mediate postexercise hyperemia in sedentary and endurance exercise-trained men and women. J Appl Physiol. 2006;101(6):16931701. PubMed ID: 16888049 doi:10.1152/japplphysiol.00441.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 429 429 39
Full Text Views 10 10 0
PDF Downloads 12 12 0