Objectively Measured Physical Activity and Polypharmacy Among Brazilian Community-Dwelling Older Adults

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Previous observations regarding association between physical activity (PA) and use of medicines among older adults are derived from self-reported PA. This study aimed to evaluate the association between objectively measured PA and polypharmacy among older adults with multimorbidity in Southern Brazil. Methods: This study included 875 noninstitutionalized older people, aged ≥60 years. Prescribed medicines used in the 15 days prior to the interview, socioeconomic data, and the presence of comorbidities were self-reported. Accelerometers were used to evaluate PA following the interview. Results: Prevalence of polypharmacy (≥5 medicines) was 38.3% (95% confidence interval, 35.0–41.5); those belonging to the lowest tertile of PA used more medicines. The authors observed a significant inverse association for polypharmacy between men belonging to the second and third tertiles of PA for objectively measured overall PA and light PA compared with the most inactive tertile. For women, the association between PA and polypharmacy was significant for overall, light, and moderate to vigorous PA only in the third tertile. Conclusions: Overall, light and moderate to vigorous PA were inversely associated to polypharmacy and differed by gender. Promotion of PA in older adults may be an effective intervention to reduce the number of medicines used independent of the number of comorbidities.

Bielemann and Gonzalez are with the Postgraduate Program in Nutrition and Foods, Federal University of Pelotas, Pelotas, Brazil. Bielemann, Silveira, Lutz, Miranda, and Bertoldi are with the Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil. Silveira is also with the Department of Physiology and Pharmacology, Institute of Biology, Federal University of Pelotas, Pelotas, Brazil. Lutz is also with the Department of Social Medicine, Faculty of Medicine, Federal University of Pelotas, Pelotas, Brazil. Miranda is also with the Postgraduate Program in Public Health, Universidade do Extremo Sul Catarinense, Criciúma, Brazil. Gonzalez is also with the Postgraduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil. Brage is with the Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom. Ekelund is with the Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway; and Norwegian Institute of Public Health, Oslo, Norway.

Silveira (marysabelfarmacologia@gmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 303 KB)
  • 1.

    United Nations. World Population AgeingDepartment of Economic and Social Affairs Population Division; 2015.

  • 2.

    Lavan AH, Gallagher PF, O’Mahony D. Methods to reduce prescribing errors in elderly patients with multimorbidity. Clin Interv Aging. 2016;11:857866. PubMed ID: 27382268

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ramos LR, Tavares NU, Bertoldi AD, et al. Polypharmacy and polymorbidity in older adults in Brazil: a public health challenge. Rev Saude Publica. 2016;50(suppl 2):9s. PubMed ID: 27982377 doi:10.1590/s1518-8787.2016050006145

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Nascimento RCRM, Alvares J, Guerra AAJ, et al. Polypharmacy: a challenge for the primary health care of the Brazilian Unified Health System. Rev Saude Publica. 2017;51(suppl 2):19s. PubMed ID: 29160460

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Masnoon N, Shakib S, Kalisch-Ellett L, Caughey GE. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017;17(1):230. PubMed ID: 29017448 doi:10.1186/s12877-017-0621-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Payne RA, Avery AJ, Duerden M, Saunders CL, Simpson CR, Abel GA. Prevalence of polypharmacy in a Scottish primary care population. Eur J Clin Pharmacol. 2014;70(5):575581. PubMed ID: 24487416 doi:10.1007/s00228-013-1639-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):3743. PubMed ID: 22579043 doi:10.1016/S0140-6736(12)60240-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Perez-Jover V, Mira JJ, Carratala-Munuera C, et al. Inappropriate use of medication by elderly, polymedicated, or multipathological patients with chronic diseases. Int J Environ Res Public Health. 2018;15(2):310. doi:10.3390/ijerph15020310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219229. PubMed ID: 22818936 doi:10.1016/S0140-6736(12)61031-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Taylor D. Physical activity is medicine for older adults. Postgrad Med J. 2014;90(1059):2632. PubMed ID: 24255119 doi:10.1136/postgradmedj-2012-131366

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Giannuzzi P, Mezzani A, Saner H, et al. Physical activity for primary and secondary prevention. Position paper of the Working Group on Cardiac Rehabilitation and Exercise Physiology of the European Society of Cardiology. Eur J Cardiovasc Prev Rehabil. 2003;10(5):319327. PubMed ID: 14663293 doi:10.1097/01.hjr.0000086303.28200.50

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Aucella F, Valente GL, Catizone L. The role of physical activity in the CKD setting. Kidney Blood Press Res. 2014;39(2–3):97106. PubMed ID: 25117619 doi:10.1159/000355783

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lin HC, Peng CH, Chiou JY, Huang CN. Physical activity is associated with decreased incidence of chronic kidney disease in type 2 diabetes patients: a retrospective cohort study in Taiwan. Prim Care Diabetes. 2014;8(4):315321. PubMed ID: 24815574 doi:10.1016/j.pcd.2014.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Loprinzi PD, Addoh O. Accelerometer-determined physical activity and all-cause mortality in a National Prospective Cohort Study of Adults Post-Acute Stroke. Am J Health Promot. 2018;32(1):2427. PubMed ID: 28718295 doi:10.1177/0890117117720061

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bertoldi AD, Hallal PC, Barros AJ. Physical activity and medicine use: evidence from a population-based study. BMC Public Health. 2006;6:224. PubMed ID: 16956396 doi:10.1186/1471-2458-6-224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ribeiro AS, Pereira LC, Silva DRP, et al. Physical activity and sitting time are specifically associated with multiple chronic diseases and medicine intake in Brazilian older adults. J Aging Phys Act. 2018;26(4):608613. PubMed ID: 29345543 doi:10.1123/japa.2017-0271

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Volaklis KA, Thorand B, Peters A, et al. Physical activity, muscular strength, and polypharmacy among older multimorbid persons: results from the KORA-age study. Scand J Med Sci Sports. 2018;28(2):604612. PubMed ID: 28329413 doi:10.1111/sms.12884

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans. 2nd ed. Washington, DC: U.S. Department of Health and Human Services; 2018.

    • Search Google Scholar
    • Export Citation
  • 19.

    Instituto Brasileiro de Geografia e Estatística. Censo 2010. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2010.

  • 20.

    Chumlea WC, Guo S. Equations for predicting stature in white and black elderly individuals. J Gerontol. 1992;47(6):M197M203. PubMed ID: 1430854 doi:10.1093/geronj/47.6.M197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    World Health Organization.Physical Status: The Use of and Interpretation of Anthropometry, Report of a WHO Expert Committee. Geneva, Switzerland: World Health Organization; 1995.

    • Search Google Scholar
    • Export Citation
  • 22.

    ABEP, Associação Brasileira de Empresas e Pesquisas. http://www.abep.org/. Accessed January 20, 2014.

  • 23.

    World Health Organization (WHO), Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC Classification and DDD Assignment. Oslo, Norway; WHO2000.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ramires VV, Wehrmeister FC, Böhm AW, et al. Physical activity levels objectively measured among older adults: a population-based study in a Southern city of Brazil. Int J Behav Nutr Phys Act. 2017;14(13):19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    van Hees VT, Fang Z, Langford J, et al. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol. 2014;117(7):738744. doi:10.1152/japplphysiol.00421.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    van Hees VT, Renstrom F, Wright A, et al. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PLoS One. 2011;6(7):e22922. PubMed ID: 21829556 doi:10.1371/journal.pone.0022922

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    van Hees VT, Gorzelniak L, Dean Leon EC, et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS One. 2013;8(4):e61691. PubMed ID: 23626718 doi:10.1371/journal.pone.0061691

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    White T, Westgate K, Hollidge S, et al. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study. Int J Obes. 2019;43(11):23332342. doi:10.1038/s41366-019-0352-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    White T, Westgate K, Wareham NJ, Brage S. Estimation of physical activity energy expenditure during free-living from wrist accelerometry in UK adults. PLoS One. 2016;11(12):e0167472. PubMed ID: 27936024 doi:10.1371/journal.pone.0167472

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hildebrand M, Van Hess VT, Hansen BH, Ekelund U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc. 2014;46(9):18161824. PubMed ID: 24887173 doi:10.1249/MSS.0000000000000289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Chiapella LC, Montemarani Menna J, Mamprin ME. Assessment of polypharmacy in elderly patients by using data from dispensed medications in community pharmacies: analysis of results by using different methods of estimation. Int J Clin Pharm. 2018;40(5):987990. PubMed ID: 29881908 doi:10.1007/s11096-018-0663-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ong SM, Lim YMF, Sivasampu S, Khoo EM. Variation of polypharmacy in older primary care attenders occurs at prescriber level. BMC Geriatr. 2018;18(1):59. PubMed ID: 29471806 doi:10.1186/s12877-018-0750-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hosseini SR, Zabihi A, Jafarian Amiri SR, Bijani A. Polypharmacy among the elderly. J Midlife Health. 2018;9(2):97103. PubMed ID: 29962809

  • 34.

    Rasu R, Agbor-Bawa W, Rianon N. Impact of polypharmacy on seniors’ self-perceived health status. South Med J. 2017;110(8):540545. PubMed ID: 28771653 doi:10.14423/SMJ.0000000000000688

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Carvalho MF, Romano-Lieber NS, Bergsten-Mendes G, et al. Polypharmacy among the elderly in the city of Sao Paulo, Brazil—SABE study. Rev Bras Epidemiol. 2012;15(4):817827. PubMed ID: 23515777 doi:10.1590/S1415-790X2012000400013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Flores LM, Mengue SS. Drug use by the elderly in Southern Brazil. Rev Saude Publica. 2005;39(6):924929. PubMed ID: 16341402 doi:10.1590/S0034-89102005000600009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Rozenfeld S, Fonseca MJ, Acurcio FA. Drug utilization and polypharmacy among the elderly: a survey in Rio de Janeiro City, Brazil. Rev Panam Salud Publica. 2008;23(1):3443. PubMed ID: 18291071 doi:10.1590/S1020-49892008000100005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Husson N, Watfa G, Laurain MC, et al. Characteristics of polymedicated (≥4) elderly: a survey in a community-dwelling population aged 60 years and over. J Nutr Health Aging. 2014;18(1):8791. PubMed ID: 24402395 doi:10.1007/s12603-013-0337-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Silva LJD, Azevedo MR, Matsudo S, Lopes GS. Association between levels of physical activity and use of medication among older women. Cadernos de Saude Publica. 2012;28(3):463471. PubMed ID: 22415178 doi:10.1590/S0102-311X2012000300006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Bueno DR, de Fatima Nunes Marucci M, Gobbo LA, de Almeida-Roediger M, de Oliveira Duarte YA, Lebrao ML. Expenditures of medicine use in hypertensive/diabetic elderly and physical activity and engagement in walking: cross secctional analysis of SABE Survey. BMC Geriatr. 2017;17(1):70. PubMed ID: 28320328 doi:10.1186/s12877-017-0437-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kikuti-Koyama KA, Monteiro HL, Ribeiro Lemes Í, et al. Impact of type 2 diabetes mellitus and physical activity on medication costs in older adults. Int J Health Plann Manage. 2019;34(4):e1774e1782. PubMed ID: 31435976 doi:10.1002/hpm.2892

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Stensel D. Primary prevention of CVD: physical activity. BMJ Clin Evid. 2009;2009:0218. PubMed ID: 21726487

  • 43.

    Watz H, Pitta F, Rochester CL, et al. An official European Respiratory Society statement on physical activity in COPD. Eur Respir J. 2014;44(6):15211537. PubMed ID: 25359358 doi:10.1183/09031936.00046814

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Harding AT, Beck BR. Exercise, osteoporosis, and bone geometry. Sports. 2017;5(2):29. doi:10.3390/sports5020029

  • 45.

    Heath I. Overdiagnosis: when good intentions meet vested interests—an essay by Iona Heath. BMJ. 2013;347:f6361. PubMed ID: 24162944 doi:10.1136/bmj.f6361

All Time Past Year Past 30 Days
Abstract Views 228 228 133
Full Text Views 12 12 5
PDF Downloads 6 6 1