Acute Effect of Exercise on Cognitive Performance in Middle-Aged Adults: Aerobic Versus Balance

in Journal of Physical Activity and Health

Click name to view affiliation

Damiano Formenti
Search for other papers by Damiano Formenti in
Current site
Google Scholar
PubMed
Close
,
Luca Cavaggioni
Search for other papers by Luca Cavaggioni in
Current site
Google Scholar
PubMed
Close
,
Marco Duca
Search for other papers by Marco Duca in
Current site
Google Scholar
PubMed
Close
,
Athos Trecroci
Search for other papers by Athos Trecroci in
Current site
Google Scholar
PubMed
Close
,
Mattia Rapelli
Search for other papers by Mattia Rapelli in
Current site
Google Scholar
PubMed
Close
,
Giampietro Alberti
Search for other papers by Giampietro Alberti in
Current site
Google Scholar
PubMed
Close
,
John Komar
Search for other papers by John Komar in
Current site
Google Scholar
PubMed
Close
, and
Pierpaolo Iodice
Search for other papers by Pierpaolo Iodice in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Recent evidence has suggested that chronic physical activities including balance exercises have positive effects on cognition, but their acute effects are still unknown. In the present study, the authors tested the hypothesis that an acute bout of balance exercise would enhance cognitive performance compared with aerobic activity. Methods: A total of 20 healthy middle-aged adults completed 2 acute 30-minute balance and moderate-intensity aerobic exercise sessions on 2 counterbalanced separate occasions. To assess cognitive functions, performance tasks in executive control, perceptual speed, and simple reaction time were tested before and immediately after each exercise session. Results: Although there were no significant interactions (time × exercise condition, P > .05), the main effects of time were significant in executive control (P < .05), perceptual speed (P < .05), and simple reaction time (P < .001), showing improvements after both exercises. Conclusions: These findings highlight that both types of exercise (aerobic, more metabolic and less cognitively demanding; balance, more cognitively and less metabolically demanding) were able to positively affect simple reaction time performance, perceptual speed, and executive control independently of physiological adjustments occurring during aerobic or balance exercise.

Formenti, Cavaggioni, Duca, Trecroci, Rapelli, and Alberti are with the Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy. Formenti is with the Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy. Komar is with the National Institute of Education, Nanyang Technological University, Singapore, Singapore. Iodice is with the Centre d’Etude des Transformations des Activités Physiques et Sportives (CETAPS) EA 3832, University of Rouen Normandy, Mont-Saint-Aignan, France.

Trecroci (athostrec@gmail.com; athos.trecroci@unimi.it) is corresponding author.
  • Collapse
  • Expand
  • 1.

    McMorris T, Tomporowski PD, Audiffren M. Exercise and Cognitive Function. Hoboken, NJ: Wiley; 2009.

  • 2.

    Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9):22432257. doi:10.1016/j.neubiorev.2013.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Voelcker-Rehage C, Niemann C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev. 2013;37(9):22682295. PubMed ID: 23399048 doi:10.1016/j.neubiorev.2013.01.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Sanders LMJ, Hortobágyi T, la Bastide-van Gemert S, van der Zee EA, van Heuvelen MJG. Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS One. 2019;14(1):e0210036. PubMed ID: 30629631 doi:10.1371/journal.pone.0210036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Tomporowski PD. Effects of acute bouts of exercise on cognition. Acta Psychol. 2003;112(3):297324. doi:10.1016/S0001-6918(02)00134-8

  • 6.

    Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 2012;1453:87101. PubMed ID: 22480735 doi:10.1016/j.brainres.2012.02.068

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hillman CH, Motl RW, Pontifex MB, et al. Physical activity and cognitive function in a cross-section of younger and older community-dwelling individuals. Health Psychol. 2006;25(6):678687. PubMed ID: 17100496 doi:10.1037/0278-6133.25.6.678

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Diamond A. Executive functions. Annu Rev Psychol. 2013;64(1):135168. PubMed ID: 23020641 doi:10.1146/annurev-psych-113011-143750

  • 9.

    Kamijo K, Hayashi Y, Sakai T, Yahiro T, Tanaka K, Nishihira Y. Acute effects of aerobic exercise on cognitive function in older adults. J Gerontol B Psychol Sci Soc Sci. 2009;64(3):356363. PubMed ID: 19363089 doi:10.1093/geronb/gbp030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Polich J, Kok A. Cognitive and biological determinants of P300: an integrative review. Biol Psychol. 1995;41(2):103146. PubMed ID: 8534788 doi:10.1016/0301-0511(95)05130-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hillman CH, Snook EM, Jerome GJ. Acute cardiovascular exercise and executive control function. Int J Psychophysiol. 2003;48(3):307314. PubMed ID: 12798990 doi:10.1016/S0167-8760(03)00080-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    McMorris T, Graydon J. The effect of exercise on cognitive performance in soccer-specific tests. J Sports Sci. 1997;15(5):459468. PubMed ID: 9386203 doi:10.1080/026404197367092

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Aks DJ. Influence of exercise on visual search: implications for mediating cognitive mechanisms. Percept Mot Skills. 1998;87(3):771783. doi:10.2466/pms.1998.87.3.771

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Voelcker-Rehage C, Godde B, Staudinger UM. Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front Hum Neurosci. 2011;5:26. PubMed ID: 21441997 doi:10.3389/fnhum.2011.00026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Davranche K, Burle B, Audiffren M, Hasbroucq T. Physical exercise facilitates motor processes in simple reaction time performance: an electromyographic analysis. Neurosci Lett. 2006;396(1):5456. PubMed ID: 16406344 doi:10.1016/j.neulet.2005.11.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Johnson W, Deary IJ. Placing inspection time, reaction time, and perceptual speed in the broader context of cognitive ability: the VPR model in the Lothian Birth Cohort 1936. Intelligence. 2011;39(5):405417. doi:10.1016/j.intell.2011.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gothe N, Pontifex MB, Hillman C, McAuley E. The acute effects of yoga on executive function. J Phys Act Health. 2013;10(4):488495. PubMed ID: 22820158 doi:10.1123/jpah.10.4.488

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pesce C. Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J Sport Exerc Psychol. 2012;34(6):766786. PubMed ID: 23204358 doi:10.1123/jsep.34.6.766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Schmidt M, Jäger K, Egger F, Roebers CM, Conzelmann A. Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: a group-randomized controlled trial. J Sport Exerc Psychol. 2015;37(6):575591. PubMed ID: 26866766 doi:10.1123/jsep.2015-0069

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Tomporowski PD, McCullick B, Pendleton DM, Pesce C. Exercise and children’s cognition: the role of exercise characteristics and a place for metacognition. J Sport Health Sci. 2015;4(1):4755. doi:10.1016/j.jshs.2014.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pesce C, Crova C, Marchetti R, et al. Searching for cognitively optimal challenge point in physical activity for children with typical and atypical motor development. Ment Health Phys Act. 2013;6(3):172180. doi:10.1016/j.mhpa.2013.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Jäger K, Schmidt M, Conzelmann A, Roebers CM. Cognitive and physiological effects of an acute physical activity intervention in elementary school children. Front Psychol. 2014;5:1473.doi:10.3389/fpsyg.2014.01473

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Borel L, Alescio-Lautier B. Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies. Neurophysiol Clin. 2014;44(1):95107. PubMed ID: 24502910 doi:10.1016/j.neucli.2013.10.129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Faugloire E, Bardy BG, Merhi O, Stoffregen TA. Exploring coordination dynamics of the postural system with real-time visual feedback. Neurosci Lett. 2005;374(2):136141. PubMed ID: 15644280 doi:10.1016/j.neulet.2004.10.043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rogge A-K, Röder B, Zech A, et al. Balance training improves memory and spatial cognition in healthy adults. Sci Rep. 2017;7(1):5661. PubMed ID: 28720898 doi:10.1038/s41598-017-06071-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bray NW, Smart RR, Jakobi JM, Jones GR. Exercise prescription to reverse frailty. Appl Physiol Nutr Metab. 2016;41(10):11121116. PubMed ID: 27649859 doi:10.1139/apnm-2016-0226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Weng T, Pierce G, Darling W, Voss M. Differential effects of acute exercise on distinct aspects of executive function. Med Sci Sports Exerc. 2015;47(7):14601469. PubMed ID: 25304335 doi:10.1249/MSS.0000000000000542

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Riebe D, Ehrman JK, Liguori G, Magal M. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Philadelphia, PA: Wolters Kluwer; 2018.

    • Search Google Scholar
    • Export Citation
  • 29.

    Hrysomallis C. Balance ability and athletic performance. Sports Med. 2011;41(3):221232. PubMed ID: 21395364 doi:10.2165/11538560-000000000-00000

  • 30.

    Rogge A-K, Röder B, Zech A, Hötting K. Exercise-induced neuroplasticity: balance training increases cortical thickness in visual and vestibular cortical regions. Neuroimage. 2018;179:471479. PubMed ID: 29959048 doi:10.1016/j.neuroimage.2018.06.065

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Trecroci A, Cavaggioni L, Lastella M, et al. Effects of traditional balance and slackline training on physical performance and perceived enjoyment in young soccer players. Res Sports Med. 2018;26(4):450461. PubMed ID: 29963921 doi:10.1080/15438627.2018.1492392

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Eckner JT, Whitacre RD, Kirsch NL, Richardson JK. Evaluating a clinical measure of reaction time: an observational study. Percept Mot Skills. 2009;108(3):717720. PubMed ID: 19725308 doi:10.2466/pms.108.3.717-720

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Treisman A. Focused attention in the perception and retrieval of multidimensional stimuli. Percept Psychophys. 1977;22(1):111. doi:10.3758/BF03206074

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys. 1974;16(1):143149. doi:10.3758/BF03203267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Routledge; 1988.

  • 36.

    Budde H, Voelcker-Rehage C, Pietraßyk-Kendziorra S, Ribeiro P, Tidow G. Acute coordinative exercise improves attentional performance in adolescents. Neurosci Lett. 2008;441(2):219223. PubMed ID: 18602754 doi:10.1016/j.neulet.2008.06.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9(1):5865. PubMed ID: 18094706 doi:10.1038/nrn2298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125130. PubMed ID: 12661673 doi:10.1111/1467-9280.t01-1-01430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Tyndall AV, Clark CM, Anderson TJ, et al. Protective effects of exercise on cognition and brain health in older adults. Exerc Sport Sci Rev. 2018;46(4):215223. PubMed ID: 30001269 doi:10.1249/JES.0000000000000161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Chaddock L, Erickson KI, Prakash RS, et al. A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control. Biol Psychol. 2012;89(1):260268. PubMed ID: 22061423 doi:10.1016/j.biopsycho.2011.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Bullock T, Giesbrecht B. Acute exercise and aerobic fitness influence selective attention during visual search. Front Psychol. 2014;5:1290. PubMed ID: 25426094 doi:10.3389/fpsyg.2014.01290

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    McMorris T, Keen P. Effect of exercise on simple reaction times of recreational athletes. Percept Mot Skills. 1994;78(1):123130. doi:10.2466/pms.1994.78.1.123

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Roig M, Nordbrandt S, Geertsen SS, Nielsen JB. The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neurosci Biobehav Rev. 2013;37(8):16451666. PubMed ID: 23806438 doi:10.1016/j.neubiorev.2013.06.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Med. 2010;40(9):765801. PubMed ID: 20726622 doi:10.2165/11534530-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Lajoie Y, Teasdale N, Bard C, Fleury M. Attentional demands for static and dynamic equilibrium. Exp Brain Res. 1993;97(1):139144. PubMed ID: 8131825 doi:10.1007/BF00228824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    van Schoor NM, Smit JH, Pluijm SMF, Jonker C, Lips P. Different cognitive functions in relation to falls among older persons. Immediate memory as an independent risk factor for falls. J Clin Epidemiol. 2002;55(9):855862. PubMed ID: 12393072 doi:10.1016/S0895-4356(02)00438-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Shubert T, McCulloch K, Hartman M, Giuliani C. The effect of an exercise-based balance intervention on physical and cognitive performance for older adults. J Geriatr Phys Ther. 2010;33(4):157164. PubMed ID: 21717919

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Smith PF, Darlington CL, Zheng Y. Move it or lose it--is stimulation of the vestibular system necessary for normal spatial memory? Hippocampus. 2010;20(1):3643. PubMed ID: 19405142

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Monno A, Temprado J-J, Zanone P-G, Laurent M. The interplay of attention and bimanual coordination dynamics. Acta Psychol. 2002;110(2–3):187211. doi:10.1016/S0001-6918(02)00033-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Smith B, Caputi P. Cognitive interference model of computer anxiety: implications for computer-based assessment. Comput Hum Behav. 2007;23(3):14811498. doi:10.1016/j.chb.2005.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Shermis MD, Lombard D. Effects of computer-based test administrations on test anxiety and performance. Comput Hum Behav. 1998;14(1):111123. doi:10.1016/S0747-5632(97)00035-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Formenti D, Perpetuini D, Iodice P, et al. Effects of knee extension with different speeds of movement on muscle and cerebral oxygenation. PeerJ. 2018;6:e5704. PubMed ID: 30310747 doi:10.7717/peerj.5704

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Voelcker-Rehage C, Godde B, Staudinger UM. Physical and motor fitness are both related to cognition in old age. Eur J Neurosci. 2010;31(1):167176. PubMed ID: 20092563 doi:10.1111/j.1460-9568.2009.07014.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3598 1281 94
Full Text Views 1292 21 3
PDF Downloads 269 24 4