Association of Physical Activity and Cardiometabolic Risk in Children 3–12 Years

Click name to view affiliation

Leigh M. Vanderloo
Search for other papers by Leigh M. Vanderloo in
Current site
Google Scholar
PubMed
Close
,
Jonathan L. Maguire
Search for other papers by Jonathan L. Maguire in
Current site
Google Scholar
PubMed
Close
,
David W. H. Dai
Search for other papers by David W. H. Dai in
Current site
Google Scholar
PubMed
Close
,
Patricia C. Parkin
Search for other papers by Patricia C. Parkin in
Current site
Google Scholar
PubMed
Close
,
Cornelia M. Borkhoff
Search for other papers by Cornelia M. Borkhoff in
Current site
Google Scholar
PubMed
Close
,
Mark S. Tremblay
Search for other papers by Mark S. Tremblay in
Current site
Google Scholar
PubMed
Close
,
Laura N. Anderson
Search for other papers by Laura N. Anderson in
Current site
Google Scholar
PubMed
Close
,
Catherine S. Birken
Search for other papers by Catherine S. Birken in
Current site
Google Scholar
PubMed
Close
, and
on behalf of the TARGet Kids! Collaboration
Search for other papers by on behalf of the TARGet Kids! Collaboration in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: This study aimed to examine the association between physical activity (PA) and a total cardio metabolic risk (CMR) score in children aged 3–12 years. Secondary objectives were to examine the association between PA and individual CMR factors. Methods: A longitudinal study with repeated measures was conducted with participants from a large primary care practice-based research network in Toronto, Canada. Mixed effects models were used to examine the relationship between parent-reported physical activity and outcome variables (total CMR score, triglycerides, glucose, high-density lipoprotein cholesterol, systolic blood pressure, waist circumference, weight-to-height ratio, and non-high-density lipoprotein cholesterol). Results: Data from 1885 children (6.06 y, 54.4% male) with multiple visits (n = 2670) were included in the analyses. For every unit increase of 60 minutes of PA, there was no evidence of an association with total CMR score (adjusted: −0.02 [−0.014 to 0.004], P = .11]. For the individual CMR components, there was evidence of a weak association between PA and systolic blood pressure (−0.01 [−0.03 to −0.01], P < .001) and waist-to-height ratio (−0.81 [−1.62 to −0.003], P < .001). Conclusion: Parent-reported PA among children aged 3–12 years was not statistically associated with total CMR, but was weakly associated with systolic blood pressure and waist-to-height ratio.

Vanderloo, Parkin, Borkhoff, and Birken are with Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, ON, Canada. Maguire and Dai are with the Applied Health Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada. Maguire and Parkin are also with the Institute of Health Policy, Management and Evaluation, Dalla Lana School of PublicHealth; and the Department of Pediatrics, Faculty of Medicine; University of Toronto, Toronto, ON, Canada. Maguire is also with the Department of Pediatrics, St. Michael’s Hospital, Toronto, ON, Canada. Parkin is also with the Division of Pediatric Medicine, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada. Tremblay is with Healthy Active Living and Obesity Research, CHEO Research Institute, Ottawa, ON, Canada. Anderson is with the Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada. Birken is also with the School of Dalla Lana Public Health, Epidemiology, University of Toronto, Toronto, ON, Canada.

Vanderloo (leigh.vanderloo@sickkids.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Carson V, Lee E-Y, Hewitt L, et al. Systematic review of the relationships between physical activity and health indicators in the early years (0–4 years). BMC Public Health. 2017;17(S5):854. doi:10.1186/s12889-017-4860-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Timmons BW, LeBlanc AG, Carson V, Connor GS, Dillman C, Janssen I. Systematic review of physical activity and health in the early years (aged 0–4 years). Appl Physiol Nutr Metab. 2012;37(4):773792. PubMed ID: 22765840 doi:10.1139/h2012-070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Canadian Society for Exercise Physiology. Canadian 24-hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Ottawa, Canada: Canadian Society of Exercise Physiology; 2016. https://csepguidelines.ca/

    • Search Google Scholar
    • Export Citation
  • 4.

    Tremblay MS, Chaput J-P, Adamo KB, et al. Canadian 24-hour movement guidelines for the early years (0-4 years): an integration of physical activity, sedentary behaviour, and sleep. BMC Public Health. 2017;17(S5):874. doi:10.1186/s12889-017-4859-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    World Health Organization. Global Strategy on Diet, Physical Activity and Health. Geneva, Switzerland: World Health Organization; 2004. https://www.who.int/nmh/wha/59/dpas/en/

    • Search Google Scholar
    • Export Citation
  • 6.

    Kohl HW, Craig CL, Lambert EV, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294305. PubMed ID: 22818941 doi:10.1016/S0140-6736(12)60898-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ding D, Lawson KD, Kolbe-Alexander TL, et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet. 2016;388(10051):13111324. PubMed ID: 27475266 doi:10.1016/S0140-6736(16)30383-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hjorth MF, Chaput J-P, Damsgaard CT, et al. Low physical activity level and short sleep duration are associated with an increased cardio-metabolic risk profile: a longitudinal study in 8-11 year old Danish children. PLoS One. 2014;9(8):e104677. PubMed ID: 25102157 doi:10.1371/journal.pone.0104677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Owen CG, Nightingale CM, Rudnicka AR, et al. Physical activity, obesity and cardiometabolic risk factors in 9- to 10-year-old UK children of white European, South Asian and black African-Caribbean origin: the Child Heart and Health Study in England (CHASE). Diabetologia. 2010;53(8):16201630. PubMed ID: 20454952 doi:10.1007/s00125-010-1781-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Rizzo NS, Ruiz JR, Oja L, Veidebaum TSM. Associations between physical activity, body fat, and insulin resistance (homeostasis model assessment) in adolescents: the European Youth Heart Study. Am J Clin Nutr. 2008;87(3):586592. PubMed ID: 18326595 doi:10.1093/ajcn/87.3.586

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Andersen LB, Riddoch C, Kriemler S, Hills A. Physical activity and cardiovascular risk factors in children. Br J Sports Med. 2011;45(11):871876. PubMed ID: 21791456 doi:10.1136/bjsports-2011-090333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Herrmann SD, Angadi SS. Children’s physical activity and sedentary time and cardiometabolic risk factors. Clin J Sport Med. 2013;23(5):408409. PubMed ID: 23989385 doi:10.1097/01.jsm.0000433154.58936.a8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ekelund U, Luan J, Sherar LB, Esliger DW, Griew P, Cooper A. Association of moderate to vigorous physical activity and sedentary time with cardiometabolic risk factors in children and adolescents. JAMA. 2012;307(7):704712. PubMed ID: 22337681 doi:10.1001/jama.2012.156

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40. doi:10.1186/1479-5868-7-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Albaum JM, Carsley S, Chen Y, et al. Persistent high non-high-density lipoprotein cholesterol in early childhood: a latent class growth model analysis. J Pediatr. 2017;191:152157. PubMed ID: 29173300 doi:10.1016/j.jpeds.2017.08.079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Juonala M, Viikari JSA, Raitakari OT. Main findings from the prospective cardiovascular risk in young Finns study. Curr Opin Lipidol. 2013;24(1):5764. PubMed ID: 23069987 doi:10.1097/MOL.0b013e32835a7ed4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med. 1998;338(23):16501656. PubMed ID: 9614255 doi:10.1056/NEJM199806043382302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kelly AS, Steinberger J, Jacobs DR, Hong C-P, Moran A, Sinaiko AR. Predicting cardiovascular risk in young adulthood from the metabolic syndrome, its component risk factors, and a cluster score in childhood. Int J Pediatr Obes. 2011;6(suppl 3):e283e289. PubMed ID: 21070100 doi:10.3109/17477166.2010.528765

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Liu J, Young TK, Zinman B, Harris SB, Connelly PW, Hanley AJG. Lifestyle variables, non-traditional cardiovascular risk factors, and the metabolic syndrome in an Aboriginal Canadian population. Obes. 2006;14(3):500508. doi:10.1038/oby.2006.65

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    McKeown NM, Meigs JB, Liu S, Saltzman E, Wilson PW, Jacques PF. Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham Offspring Cohort. Diabetes Care. 2004;27(2):538546. PubMed ID: 14747241 doi:10.2337/diacare.27.2.538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Aranha Crispim PA, do Rosário Gondim Peixoto M, Brandao Veiga Jardim PC. Risk factors associated with high blood pressure in two- to five-year-old children. Arq Bras Cardiol. 2014;102(1):3946. doi:10.5935/abc.20130227

    • Search Google Scholar
    • Export Citation
  • 22.

    Chinapaw MJM, Altenburg TM, van Eijsden M, Gemke RJBJ, Vrijkotte TGM. Screen time and cardiometabolic function in Dutch 5-6 year olds: cross-sectional analysis of the ABCD-study. BMC Public Health. 2014;14(933). PubMed ID: 25200635 doi:10.1186/1471-2458-14-933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    DuRant RH, Baranowski T, Rhodes T, et al. Association among serum lipid and lipoprotein concentrations and physical activity, physical fitness, and body composition in young children. J Pediatr. 1993;123(2):185192. PubMed ID: 8345412 doi:10.1016/S0022-3476(05)81687-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Klesges RC, Klesges LM, Eck LH, Shelton ML. A longitudinal analysis of accelerated weight gain in preschool children. Pediatrics. 1995;95(1):126130. PubMed ID: 7770289

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Fletcher EA, Lamb KE, McNaughton SA, et al. Cross-sectional and prospective mediating effects of dietary intake on the relationship between sedentary behaviour and body mass index in adolescents. BMC Public Health. 2017;17(1):110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mann KD, Howe LD, Basterfield L, et al. Longitudinal study of the associations between change in sedentary behavior and change in adiposity during childhood and adolescence: Gateshead Millennium Study. Int J Obes. 2017;41(7):10421047. doi:10.1038/ijo.2017.69

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Jiménez-Pavón D, Konstabel K, Bergman P, et al. Physical activity and clustered cardiovascular disease risk factors in young children: a cross-sectional study (the IDEFICS study). BMC Med. 2013;11(172). PubMed ID: 23899208 doi:10.1186/1741-7015-11-172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kolpakov V, Bespalova T, Tomilova E, et al. Functional reserves and adaptive capacity of subjects with different levels of habitual physical activity. Hum Physiol. 2011;37(1):93104. doi:10.1134/S0362119711010063

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Verswijveren JJM, Lamb KE, Bell LA, Timperio A, Salkmon J, Ridgers ND. Associations between activity patterns and cardio-metabolic risk factors in children and adolescents: a systematic review. PLoS One. 2018;13(8):e0201947. PubMed ID: 30114269 doi:10.1371/journal.pone.0201947

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    STrengthening the Reporting of OBservational studies in Epidemiology (STROBE). STROBE Checklists (version 4). 2007. http://www.strobe-statement.org/index.php?id=available-checklists

    • Search Google Scholar
    • Export Citation
  • 31.

    Statistics Canada. Canadian Health Measures Survey. Ottawa, Canada: Statistics Canada; 2019. https://www.statcan.gc.ca/eng/survey/household/5071

    • Search Google Scholar
    • Export Citation
  • 32.

    Carsley S, Borkhoff CM, Maguire JL, et al. Cohort profile: the applied research group for Kids (TARGet Kids!). Int J Epidemiol. 2015;44(3):776788. PubMed ID: 24982016 doi:10.1093/ije/dyu123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Statistics Canada. Canadian Community Health Survey. Ottawa, Canada: Statistics Canada; 2017. https://www.statcan.gc.ca/eng/survey/household/3226

    • Search Google Scholar
    • Export Citation
  • 34.

    Eisenmann JC. On the use of a continuous metabolic syndrome score in pediatric research. Cardiovasc Diabetol. 2008;7(1):17. doi:10.1186/1475-2840-7-17

  • 35.

    Eisenmann JC, Laurson KR, DuBose KD, Smith BK, Donnelly JE. Construct validity of a continuous metabolic syndrome score in children. Diabetol Metab Syndr. 2010;2(1):8. doi:10.1186/1758-5996-2-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Steiner MJ, Skinner AC, Perrin EM. Fasting might not be necessary before lipid screening: a nationally representative cross-sectional study. Pediatrics. 2011;128(3):463470. PubMed ID: 21807697 doi:10.1542/peds.2011-0844

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Statistics Canada. Median Total Income, by Family Type, by Census Metropolitan Area. Ottawa, Canada: Statistics Canada; 2016. http://www.statcan.gc.ca/tables-tableaux/sumsom/%0A101/cst01/famil107a-eng.htm.%0A

    • Search Google Scholar
    • Export Citation
  • 38.

    Anderson LN, Maguire JL, Lebovic G, et al. Duration of fasting, serum lipids, and metabolic profile in early childhood. J Pediatr. 2017;180(e41):4752.e1. doi:10.1016/j.jpeds.2016.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(suppl 5):S213S256. doi:10.1542/peds.2009-2107C

    • Search Google Scholar
    • Export Citation
  • 40.

    Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in School-Aged Children and Youth. Appl Physiol Nutr Metab. 2016;41(6 ):S197S239. doi:10.1139/apnm-2015-0663

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Plumptre L, Anderson LN, Chen Y, et al. Longitudinal analysis of sleep duration and cardiometabolic risk in young children. Child Obes. 2017;13(4):291299. PubMed ID: 30433827 doi:10.1089/chi.2016.0279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Bronsert MR, Henderson WG, Valuck R, Hosokawa P, Hammermeister K. Comparative effectiveness of antihypertensive therapeutic classes and treatment strategies in the initiation of therapy in primary care patients: a Distributed Ambulatory Research in Therapeutics Network (DARTNet) Study. J Am Board Fam Med. 2013;26(5):529538. PubMed ID: 24004705 doi:10.3122/jabfm.2013.05.130048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Secker D, Dietitians of Canada, Canadian Paediatric Society, College of Family Physicians of Canada, Community Health Nurses of Canada. Promoting optimal monitoring of child growth in Canada: using the new WHO growth charts. Can J Diet Pract Res. 2010;71(1):e1e3. PubMed ID: 21815309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    van Buuren S, Groothuis-Oudshoorn K. MICE: Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011;45(3):167.

  • 45.

    Enders CK. Using the expectation maximization algorithm to estimate coefficient alpha for scales with item-level missing data. Psychol Methods. 2003;8(3):322337. PubMed ID: 14596494 doi:10.1037/1082-989X.8.3.322

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Sääkslahti A, Numminen P, Varstala V, Helenius H, Tammi A, Viikari J VI. Physical activity as a preventive measure for coronary heart disease risk factors in early childhood. Scand J Med Sci Sport. 2004;14(3):143149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Wilson DK, Klesges LM, Klesges RC, et al. A prospective study of familial aggregation of blood pressure in young children. J Clin Epidemiol. 1992;45(9):959969. PubMed ID: 1432025 doi:10.1016/0895-4356(92)90112-Z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Scheffler C, Ketelhut K, Mohasseb I. Does physical education modify the body composition? Results of a longitudinal study of pre-school children. Anthropol Anz. 2007;65(2):193201. PubMed ID: 17711151 doi:10.1127/anthranz/65/2007/193

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Yang H, Xin Z, Feng J-P, Yang J-K. Waist-to-height ratio is better than body mass index and waist circumference as a screening criterion for metabolic syndrome in Han Chinese adults. Medicine. 2017;96(39):e8192. doi:10.1097/MD.0000000000008192

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Lee O, Lee D-C, Lee S, Kim YS. Associations between physical activity and obesity defined by waist-to-height ratio and body mass index in the Korean population. PLoS One. 2016;11(7):e0158245. PubMed ID: 27447716 doi:10.1371/journal.pone.0158245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Pojskic H, Eslami B. Relationship between obesity, physical activity, and cardiorespiratory fitness levels in children and adolescents in Bosnia and Herzegovina: an analysis of gender differences. Front Physiol. 2018;9(1734). PubMed ID: 30546322 doi:10.3389/fphys.2018.01734

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Khoury M, Manlhiot C, Dobbin S, et al. Role of waist measures in characterizing the lipid and blood pressure assessment of adolescents classified by body mass index. Arch Pediatr Adolesc Med. 2012;166(8):719724. PubMed ID: 22473884 doi:10.1001/archpediatrics.2012.126

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Khoury M, Manlhiot C, McCrindle BW. Role of the waist/height ratio in the cardiometabolic risk assessment of children classified by body mass index. J Am Coll Cardiol. 2013;62(8):742751. PubMed ID: 23500256 doi:10.1016/j.jacc.2013.01.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Gillman MW, Cook NR. Blood pressure measurement in childhood epidemiological studies. Circulation. 1995;92(4):10491057. PubMed ID: 7641339 doi:10.1161/01.CIR.92.4.1049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Marcovina SM, Gaur VP, Albers JJ. Biological variability of cholesterol, triglyceride, low- and high-density lipoprotein cholesterol, lipoprotein(a), and apolipoproteins A-I and B. Clin Chem. 1994;40(4):574578. PubMed ID: 8149613 doi:10.1093/clinchem/40.4.574

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Corder K, Crespo NC, van Sluijs EMF, Lopez NV, Elder JP. Parent awareness of young children’s physical activity. Prev Med. 2012;55(3):201205. doi:10.1016/j.ypmed.2012.06.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Tremblay M, Wolfson M, Gorber SC. Canadian Health Measures Survey: rationale, background and overview. Health Rep. 2007;18(suppl 18):720.

  • 58.

    Sarker H, Anderson LN, Borkhoff CM, et al. Validation of parent—reported physical activity and sedentary time by accelerometry in young children. BMC Res Notes. 2015;8 (735). PubMed ID: 26621253 doi:10.1186/s13104-015-1648-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Sovio U, Skow A, Falconer C, Park MH, Viner RM, Kinra S. Improving prediction algorithms for cardiometabolic risk in children and adolescents. J Obes. 2013;2013(684782). PubMed ID: 23862055 doi:10.1155/2013/684782

    • Search Google Scholar
    • Export Citation
  • 60.

    Kamel M, Smith B, Wahi G, Birken CS, Anderson L. Continuous cardiometabolic risk score definitions in early childhood: a scoping review. Obes Rev. 2018; 19(12):16881699. PubMed ID: 30223304 doi:10.1111/obr.12748

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Guerrero MD, Barnes JD, Walsh JJ, Chaput J-P, Tremblay MS, Goldfield GS. 24-Hour movement behaviors and impulsivity. Pediatrics. 2019;144(3):e20190187. PubMed ID: 31413180 doi:10.1542/peds.2019-0187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Walsh JJ, Barnes JD, Cameron JD, et al. Associations between 24 hour movement behaviours and global cognition in US children: a cross-sectional observational study. Lancet Child Adolesc Heal. 2018;2(11):783791. doi:10.1016/S2352-4642(18)30278-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Katzmarzyk P, Staino A. Relationship between meeting 24-hour movement guidelines and cardiometabolic risk factors in children. J Phys Act Health. 2017;14(10):779784. PubMed ID: 28556685 doi:10.1123/jpah.2017-0090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2793 429 5
Full Text Views 66 20 9
PDF Downloads 43 9 0