Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Income is an important determinant of physical activity (PA) when analyzed in its different domains. Sociodemographic characteristics such as sex, age, education, and marital status reveal distinct population profiles when PA domains are analyzed in isolation. This study aimed to describe clusters of PA in domains within income inequalities and to investigate the associated sociodemographic characteristics of Brazilian adults. Methods: A secondary analysis of the National Health Survey was performed (N = 50,176). PA, sociodemographic characteristics, and family income were investigated. Low- (n = 9504) and high-income adults (n = 6330) were analyzed. Two-step cluster and Rao–Scott chi-square tests were employed. Results: High-income adults accumulated 1.06 times more PA in leisure time compared with low-income adults. Of the 3 clusters observed, the inactive cluster was more prevalent (low-income group: 65.9%; 95% confidence interval [CI], 64.1–67.5; high-income group: 84.5%; 95% CI, 82.9–86.0). Work/leisure activities (21.2%; 95% CI, 19.8–22.8) and commuting/household activities (12.9%; 95% CI, 11.8–14.1) characterized low-income adults. Work/household activities (10.9%; 95% CI, 9.6–12.3) and commuting/leisure activities (4.6%, 95% CI, 3.9–5.4) characterized high-income adults. Sex (P < .001), age (P < .001), and marital status (P = .0023) were associated with low-income clusters. Conclusion: PA clustering differs within income inequalities. PA in leisure differentiates the opportunities in low- and high-income groups, but it is representative of a very small portion of the wealth.

The authors are with the Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil.

Manta (sofiawolker@gmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 10 KB)
    • Supplementary Table S2 (PDF 155 KB)
  • 1.

    Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJ, Martin BW. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258271. PubMed ID: 22818938 doi:10.1016/S0140-6736(12)60735-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Holtermann A, Krause N, van der Beek AJ, Straker L. The physical activity paradox: six reasons why Occupational Physical Activity (OPA) does not confer the cardiovascular health benefits that leisure time physical activity does. Br J Sports Med. 2018;52(3):149150. PubMed ID: 28798040 doi:10.1136/bjsports-2017-097965

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mahmood S, MacInnis RJ, English DR, Karahalios A, Lynch BM. Domain-specific physical activity and sedentary behaviour in relation to colon and rectal cancer risk: a systematic review and meta-analysis. Int J Epidemiol. 2017;46(6):17971813. PubMed ID: 29025130 doi:10.1093/ije/dyx137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    White RL, Babic MJ, Parker PD, Lubans DR, Astell-Burt T, Lonsdale C. Domain-specific physical activity and mental health: a meta-analysis. Am J Prev Med. 2017;52(5):653666. PubMed ID: 28153647 doi:10.1016/j.amepre.2016.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Beenackers MA, Kamphuis CB, Giskes K, et al. Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: a systematic review. Int J Behav Nutr Phys Act. 2012;9(1):116. doi:10.1186/1479-5868-9-116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kino S, Bernabé E, Sabbah W. Socioeconomic inequality in clusters of health-related behaviours in Europe: latent class analysis of a cross-sectional European survey. BMC Public Health. 2017;17(1):497. PubMed ID: 28535751 doi:10.1186/s12889-017-4440-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Omorou AY, Coste J, Escalon H, Vuillemin A. Patterns of physical activity and sedentary behaviour in the general population in France: cluster analysis with personal and socioeconomic correlates. J Public Health. 2016;38(3):483492. doi:10.1093/pubmed/fdv080

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hulteen RM, Smith JJ, Morgan PJ, et al. Global participation in sport and leisure-time physical activities: a systematic review and meta-analysis. Prev Med. 2017;95(1):1425. PubMed ID: 27939265 doi:10.1016/j.ypmed.2016.11.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Del Duca GF, Nahas MV, de Sousa TF, Mota J, Hallal PC, Peres KG. Clustering of physical inactivity in leisure, work, commuting and household domains among Brazilian adults. Public Health. 2013;127(6):530537. PubMed ID: 23706706 doi:10.1016/j.puhe.2013.02.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Pedisic Z, Shrestha N, Loprinzi PD, Mehata S, Mishra SR. Prevalence, patterns, and correlates of physical activity in Nepal: findings from a nationally representative study using the Global Physical Activity Questionnaire (GPAQ). BMC Public Health. 2019;19(864):18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Oja P, Kelly P, Pedisic Z, et al. Associations of specific types of sports and exercise with all-cause and cardiovascular-disease mortality: a cohort study of 80 306 British adults. Br J Sports Med. 2017;51(10):812817. PubMed ID: 27895075 doi:10.1136/bjsports-2016-096822

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Rovniak LS, Sallis JF, Saelens BE, et al. Adults’ physical activity patterns across life domains: cluster analysis with replication. Health Psychol. 2010;29(5):496505. PubMed ID: 20836604 doi:10.1037/a0020428

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chan CW, Leung SF. Lifestyle health behaviors of Hong Kong Chinese: results of a cluster analysis. Asia Pac J Public Health. 2015;27(3):293302. PubMed ID: 25296668 doi:10.1177/1010539514555214

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Del Duca GF, Garcia LMT, da Silva SG, et al. Clustering of physical inactivity in leisure, work, commuting, and household domains: data from 47,477 industrial workers in Brazil. J Phys Act Health. 2015;12(9):12641271. PubMed ID: 25494097 doi:10.1123/jpah.2014-0309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bhatnagar P, Townsend N, Shaw A, Foster C. The physical activity profiles of South Asian ethnic groups in England. J Epidemiol Community Health. 2016;70(6):602608. PubMed ID: 26677257 doi:10.1136/jech-2015-206455

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Morris LJ, D’Este C, Sargent-Cox K, Anstey KJ. Concurrent lifestyle risk factors: clusters and determinants in an Australian sample. Prev Med. 2016;84:15. PubMed ID: 26740345 doi:10.1016/j.ypmed.2015.12.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    United Nations Development Programme. Human Development Report 2016: Human Development for Everyone. New York, NY: United Nations Development Programme (UNDP); 2017. doi:10.18356/b6186701-en

    • Search Google Scholar
    • Export Citation
  • 18.

    Del Duca GF, Nahas MV, Garcia LMT, Mota J, Hallal PC, Peres MA. Prevalence and sociodemographic correlates of all domains of physical activity in Brazilian adults. Prev Med. 2013;56(2):99102. PubMed ID: 23200875 doi:10.1016/j.ypmed.2012.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    de Sá TH, Pereira RHM, Duran AC, Monteiro CA. Socioeconomic and regional differences in active transportation in Brazil. Revista de Saúde Pública. 2016;50(37):16. doi:10.1590/S1518-8787.2016050006126

    • Search Google Scholar
    • Export Citation
  • 20.

    Manta SW, Sandreschi PF, Matias TS, Tomicki C, Benedetti TRB. Clustering of physical activity and sedentary behavior associated to risk for metabolic syndrome in older adults. J Aging Phys Act. 2019;27(6):781786. doi:10.1123/japa.2018-0300

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    World Health Organization. Handbook on Health Inequality Monitoring: With a Special Focus on Low- and Middle-Income Countries. Geneva, Switzerland: World Health Organization; 2013.

    • Search Google Scholar
    • Export Citation
  • 22.

    World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World. Geneva, Switzerland: World Health Organization; 2018. https://apps.who.int/iris/bitstream/handle/10665/272722/9789241514187-eng.pdf?ua=1. Accessed December 19, 2019.

    • Search Google Scholar
    • Export Citation
  • 23.

    National Health Survey. Perception of Health Status, Lifestyles and Chronic Diseases Brazil, Major Regions and Federation Units. Rio de Janeiro, Brazil: Health Ministry; 2014. https://www.pns.icict.fiocruz.br. Accessed April 7, 2019.

    • Search Google Scholar
    • Export Citation
  • 24.

    de Souza-Júnior PRB, de Freitas MPS, de Abreu Antonaci G, Szwarcwald CL. Sampling design for the National Health Survey, 2013. Epidemiologia e Serviços de Saúde. 2015;24(2):207216. doi:10.5123/S1679-49742015000200003

    • Search Google Scholar
    • Export Citation
  • 25.

    Szwarcwald CL, Malta DC, Pereira CA, et al. National Health Survey in Brazil: design and methodology of application. Ciência Saúde Coletiva. 2014;19(2):333342. PubMed ID: 24863810 doi:10.1590/1413-81232014192.14072012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Monteiro CA, Florindo AA, Claro RM, Moura EC. Validity of indicators of physical activity and sedentariness obtained by telephone survey. Rev Saúde Pública. 2008;42(4):575581. PubMed ID: 18709236 doi:10.1590/S0034-89102008000400001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Moreira AD, Claro RM, Felisbino-Mendes MS, Velasquez-Melendez G. Validity and reliability of a telephone survey of physical activity in Brazil. Rev Bras Epidemiol. 2017;20(1):136146. PubMed ID: 28513801 doi:10.1590/1980-5497201700010012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bacher J, Wenzig K, Vogler M. TwoStep Cluster—A First Evaluation. Nürnberg: Universität Erlangen-Nürnberg, Wirtschafts- und Sozialwissenschaftliche Fakultät, Sozialwissenschaftliches Institut Lehrstuhl für Soziologie; 2004.

    • Search Google Scholar
    • Export Citation
  • 29.

    Florindo AA, Guimarães VV, Cesar CLG, de Azevedo Barros MB, Alves MCGP, Goldbaum M. Epidemiology of leisure, transportation, occupational, and household physical activity: prevalence and associated factors. J Phys Act Health. 2009;6(5):625632. PubMed ID: 19953839 doi:10.1123/jpah.6.5.625

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Arredondo EM, Sotres-Alvarez D, Stoutenberg M, et al. Latino/Hispanic adults: results from the Hispanic community health study/study of Latinos. Am J Prev Med. 2016;50(4):500508. PubMed ID: 26597505 doi:10.1016/j.amepre.2015.08.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Wallmann-Sperlichet B, Froboese I. Physical activity during work, transport and leisure in Germany: prevalence and socio-demographic correlates. PLoS One. 2014;9(11):19.

    • Search Google Scholar
    • Export Citation
  • 32.

    Ferreira RW, Caputo EL, Häfele CA, et al. Access to public physical activity programs in Brazil: National Health Survey, 2013. Rep Public Health. 2019;35(2):e00008618.

    • Search Google Scholar
    • Export Citation
  • 33.

    Thomson K, Hillier-Brown F, Todd A, McNamara C, Huijts T, Bambra C. The effects of public health policies on health inequalities in high-income countries: an umbrella review. BMC Public Health. 2018;18(1):869. PubMed ID: 30005611 doi:10.1186/s12889-018-5677-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lewis ZH, Markides KS, Ottenbacher KJ, Al Snih S. The impact of 10-year physical activity changes on 7-year mortality in older Mexican Americans. J Phys Act Health. 2018;15(1):3039. PubMed ID: 28682651 doi:10.1123/jpah.2016-0454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    González S, Lozano Ó, Ramírez A. Physical activity levels among Colombian adults: inequalities by gender and socioeconomic status. Biomédica. 2014;34(3):447459. PubMed ID: 25504131 doi:10.7705/biomedica.v34i3.2258

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Silva KS, Garcia LMT, Rabacow FM, Resende LFM, TH. Physical activity as part of daily living: moving beyond quantitative recommendations. Prev Med. 2017;96:160162. PubMed ID: 27840115 doi:10.1016/j.ypmed.2016.11.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Chau JY, Engelen L, Kolbe-Alexander T, et al. “In Initiative Overload”: Australian perspectives on promoting physical activity in the workplace from diverse industries. Int. J Environ Res Public Health. 2019;16(516):111. doi:10.3390/ijerph16030516

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 246 246 41
Full Text Views 12 12 1
PDF Downloads 10 10 2