Network Effects on Adolescents’ Perceived Barriers to Physical Activity

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Adolescent physical activity (PA) is widely linked to positive health outcomes. Unfortunately, 80% of adolescents do not meet recommendations, which may be due to perceived barriers to PA. Peer interactions significantly affect adolescent PA behaviors. This study aims to analyze distribution of PA barriers throughout adolescent friendship networks and barriers’ associations with PA. Methods: Adolescents (N = 383, mean = 10.77 y, SD = 1.30 y, 51.4% male) reported frequency of experiencing PA barriers (body related, social, fitness, convenience, and resource) and names of their friends. Average steps and minutes of moderate- to vigorous-intensity PA per day were measured using accelerometers. Linear network autocorrelation models determined if friends perceived barriers similarly when compared with nonfriends and analyzed relationships between barriers and objective PA measures while controlling for network effects. Results: Moderate- to vigorous-intensity PA, steps per day, body-related barriers, and social barriers displayed significant network effects, suggesting significant association with the scores of their friends. Average steps per day were significantly associated with age, sex, and social barriers, while inversely associated with fitness barriers. Conclusions: This research suggests adolescents’ perceived PA barriers are significantly associated with those of their friends. Researchers and practitioners aiming to reduce barriers to PA among adolescents may wish to assess peer reinforcing effects.

Prochnow is with the Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA. van Woudenberg is with Erasmus University Rotterdam, Rotterdam, Netherlands. Patterson is with the Department of Health Kinesiology, Texas A&M University, College Station, TX, USA.

Prochnow (Tyler_prochnow1@baylor.edu) is corresponding author.
  • 1.

    Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40. PubMed ID: 20459784 doi:10.1186/1479-5868-7-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    World Health Organization. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: World Health Organization; 2010.

    • Search Google Scholar
    • Export Citation
  • 3.

    Hallal PC, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247257. PubMed ID: 22818937 doi:10.1016/S0140-6736(12)60646-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cooper AR, Goodman A, Page AS, et al. Objectively measured physical activity and sedentary time in youth: the international children’s accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015;12(1):113. PubMed ID: 26377803 doi:10.1186/s12966-015-0274-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kahn JA, Huang B, Gillman MW, et al. Patterns and determinants of physical activity in U.S. adolescents. J Adolesc Health. 2008;42(4):369377. PubMed ID: 18346662 doi:10.1016/j.jadohealth.2007.11.143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Goh Y-Y, Bogart LM, Sipple-Asher BK, et al. Using community-based participatory research to identify potential interventions to overcome barriers to adolescents’ healthy eating and physical activity. J Behav Med. 2009;32(5):491502. PubMed ID: 19544091 doi:10.1007/s10865-009-9220-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sterdt E, Liersch S, Walter U. Correlates of physical activity of children and adolescents: a systematic review of reviews. Health Educ J. 2014;73(1):7289. doi:10.1177/0017896912469578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Martins J, Marques A, Sarmento H, et al. Adolescents’ perspectives on the barriers and facilitators of physical activity: a systematic review of qualitative studies. Health Educ Res. 2015;30(5):742755. PubMed ID: 26324394 doi:10.1093/her/cyv042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Roth SE, Gill M, Chan-Golston AM, et al. Physical activity correlates in middle school adolescents: perceived benefits and barriers and their determinants. J School Nurs. 2018;35(5):348358. PubMed ID: 29895181 doi:10.1177/1059840518780300

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Prochnow T, Ylitalo KR, Sharkey J, et al. Perceived physical activity barriers of Mexican-heritage sibling dyads. Am J Health Behav. 2019;43(4):781794. PubMed ID: 31239020 doi:10.5993/AJHB.43.4.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Zabinski MF, Saelens BE, Stein RI, et al. Overweight children’s barriers to and support for physical activity. Obes Res. 2003;11(2):238246. PubMed ID: 12582220 doi:10.1038/oby.2003.37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Prochnow T, Delgado H, Patterson MS, et al. Social network analysis in child and adolescent physical activity research: a systematic literature review. J Phys Act Health. 2020;17(2):250260. PubMed ID: 31923901 doi:10.1123/jpah.2019-0350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Beets MW, Cardinal BJ, Alderman BL. Parental social support and the physical activity-related behaviors of youth: a review. Health Educ Behav. 2010;37(5):621644. PubMed ID: 20729347 doi:10.1177/1090198110363884

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Verloigne M, Cardon G, De Craemer M, et al. Mediating effects of self-efficacy, benefits and barriers on the association between peer and parental factors and physical activity among adolescent girls with a lower educational level. PLoS One. 2016;11(6):e0157216. PubMed ID: 27309847 doi:10.1371/journal.pone.0157216

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Simpkins SD, Schaefer DR, Price CD, et al. Adolescent friendships, BMI, and physical activity: untangling selection and influence through longitudinal social network analysis. J Res Adolesc. 2013;23(3):537549. PubMed ID: 24222971 doi:10.1111/j.1532-7795.2012.00836.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Steglich C, Snijders TAB, Pearson M. Dynamic networks and behavior: separating selection from influence. Sociol Methodol. 2010;40(1):329393. doi:10.1111/j.1467-9531.2010.01225.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Scott J, Carrington PJ. The SAGE Handbook of Social Network Analysis. London: SAGE Publications; 2011.

  • 18.

    Marmot M, Wilkinson R. Social Determinants of Health. Oxford: Oxford University Press; 2005.

  • 19.

    McLeroy KR, Bibeau D, Steckler A, et al. An ecological perspective on health promotion programs. Health Educ Q. 1988;15(4):351377. doi:10.1177/109019818801500401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Valente T. Social Networks and Health: Models, Methods, and Applications. Oxford: Oxford University Press; 2010.

  • 21.

    Atkin AJ, van Sluijs EMF, Dollman J, et al. Identifying correlates and determinants of physical activity in youth: how can we advance the field? Prev Med. 2016;87:167169. PubMed ID: 26940254 doi:10.1016/j.ypmed.2016.02.040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Fernández I, Canet O, Giné-Garriga M. Assessment of physical activity levels, fitness and perceived barriers to physical activity practice in adolescents: cross-sectional study. Eur J Pediatr. 2017;176(1):5765. PubMed ID: 27858223 doi:10.1007/s00431-016-2809-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bevelander KE, Smit CR, van Woudenberg TJ, et al. Youth’s social network structures and peer influences: study protocol MyMovez project—Phase I. BMC Public Health. 2018;18(1):504. PubMed ID: 29661223 doi:10.1186/s12889-018-5353-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Marks P, Babcock B, Cillessen AHN, et al. The effects of participation rate on the internal reliability of peer nomination measures. Social Dev. 2013;22(3):609622. doi:10.1111/j.1467-9507.2012.00661.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Sushames A, Edwards A, Thompson F, et al. Validity and reliability of Fitbit Flex for step count, moderate to vigorous physical activity and activity energy expenditure. PLoS One. 2016;11(9):e0161224e0161224. PubMed ID: 27589592 doi:10.1371/journal.pone.0161224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chu AHY, Ng SHX, Paknezhad M, et al. Comparison of wrist-worn Fitbit flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS One. 2017;12(2):e0172535e0172535. PubMed ID: 28234953 doi:10.1371/journal.pone.0172535

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Van Buuren S. Multiple imputation of multilevel data. In Hox, J & Roberts JK, ed. Handbook of Advanced Multilevel Analysis. London: Psychology Press; Vol 10. 2011:173196.

    • Search Google Scholar
    • Export Citation
  • 28.

    IBM. IBM SPSS Statistics for Windows Version 25. Armonk, NY: IBM Corp; 2018.

  • 29.

    Leenders RTAJ. Modeling social influence through network autocorrelation: constructing the weight matrix. Soc Netw. 2002;24(1):2147. doi:10.1016/S0378-8733(01)00049-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hunter DR, Handcock MS, Butts CT, et al. ergm: a package to fit, simulate and diagnose exponential-family models for networks. J Stat Softw. 2008;24(3):29. PubMed ID: 19756229 doi:10.18637/jss.v024.i03

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    de la Haye K, Shin H, Vega Yon GG, et al. Smoking diffusion through networks of diverse, urban american adolescents over the high school period. J Health Soc Behav. 2019;60(3):362376. PubMed ID: 31526021 doi:10.1177/0022146519870521

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Jacobs W, Goodson P, Barry AE, et al. Adolescent social networks and alcohol use: variability by gender and type. Subst Use Misuse. 2017;52(4):477487. PubMed ID: 28010159 doi:10.1080/10826084.2016.1245333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    McPherson M, Smith-Lovin L, Cook JM. Birds of a feather: homophily in social networks. Ann Rev Soc. 2001;27(1):415444. doi:10.1146/annurev.soc.27.1.415

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Park J, Ishikawa-Takata K, Lee S, et al. Comparison of daily physical activity parameters using objective methods between overweight and normal-weight children. J Sport Health Sci. 2018;7(2):210217. PubMed ID: 30356488 doi:10.1016/j.jshs.2017.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Utesch T, Dreiskämper D, Naul R, et al. Understanding physical (in-) activity, overweight, and obesity in childhood: effects of congruence between physical self-concept and motor competence. Sci Rep. 2018;8(1):5908. PubMed ID: 29651046 doi:10.1038/s41598-018-24139-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Matthews T, Danese A, Wertz J, et al. Social isolation and mental health at primary and secondary school entry: a longitudinal cohort study. J Am Acad Child Adolesc Psychiatry. 2015;54(3):225232. PubMed ID: 25721188 doi:10.1016/j.jaac.2014.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Tarp J, Child A, White T, et al. Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents. Int J Obes. 2018;42(9):16391650. PubMed ID: 30006582 doi:10.1038/s41366-018-0152-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Catherine MS, Peter REC. Exploring self-perceptions and social influences as correlates of adolescent leisure-time physical activity. J Sport Exerc Psychol. 2008;30(1):322. PubMed ID: 18369240 doi:10.1123/jsep.30.1.3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Schmitz KH, Lytle LA, Phillips GA, et al. Psychosocial correlates of physical activity and sedentary leisure habits in young adolescents: the teens eating for energy and nutrition at school study. Prev Med. 2002;34(2):266278. PubMed ID: 11817924 doi:10.1006/pmed.2001.0982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Gardner RM, Brown DL. Comparison of video distortion and figural drawing scale for measuring and predicting body image dissatisfaction and distortion. Pers Individ Dif. 2010;49(7):794798. doi:10.1016/j.paid.2010.07.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Andrew R, Tiggemann M, Clark L. Predictors and health-related outcomes of positive body image in adolescent girls: a prospective study. Dev Psychol. 2016;52(3):463474. PubMed ID: 26727595 doi:10.1037/dev0000095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Prochnow T, Patterson MS, Umstattd Meyer MR. A social network approach to analyzing body dissatisfaction among sorority members using two network generators. J Am Coll Health. 2019 Sep 4:1-9. PubMed ID: 31498736 doi:10.1080/07448481.2019.1657121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Henry T, Gesell SB, Ip EH. Analyzing heterogeneity in the effects of physical activity in children on social network structure and peer selection dynamics. Netw Sci. 2016;4(3):336363. PubMed ID: 27867518 doi:10.1017/nws.2016.2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Valente T, Palinkas LA, Czaja S, et al. Social network analysis for program implementation. PLoS One. 2015;10(6):e0131712. PubMed ID: 26110842 doi:10.1371/journal.pone.0131712

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Centola D, Macy M. Complex contagions and the weakness of long ties. Am J Sociol. 2007;113(3):702734. doi:10.1086/521848

  • 46.

    Valente TW, Pumpuang P. Identifying opinion leaders to promote behavior change. Health Educ Behav. 2007;34(6):881896. PubMed ID: 17602096 doi:10.1177/1090198106297855

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    van Woudenberg TJ, Simoski B, Fernandes de Mello Araujo E, et al. Identifying influence agents that promote physical activity through the simulation of social network interventions: agent-based modeling study. J Med Internet Res. 2019;21(8):e12914. PubMed ID: 31381504 doi:10.2196/12914

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Snijders TAB, van de Bunt GG, Steglich CEG. Introduction to stochastic actor-based models for network dynamics. Soc Netw. 2010;32(1):4460. doi:10.1016/j.socnet.2009.02.004

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 251 251 75
Full Text Views 25 25 4
PDF Downloads 16 16 5