Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Endogenous antioxidants are critical to limiting cellular oxidative damage. Methods: The authors determined if habitual physical activity (PA) and cardiorespiratory fitness were associated with skeletal muscle expression of endogenous antioxidants (superoxide dismutase, catalase, and glutathione peroxidase) and circulating oxidative stress markers (serum 8-hydroxy-2′-deoxyguanosine [8-OHdG]; oxidized low-density lipoprotein [LDL]) in older adults. Moderate to vigorous PA (MVPA) was estimated using a validated PA questionnaire in 26 older adults (mean [SD]; M/F = 9/17, age = 68 [4] y, body mass index = 26 [3] kg·m−2). Maximal oxygen consumption was estimated using the YMCA submaximal cycle test. Skeletal muscle endogenous antioxidants and serum 8-OHdG and oxidized LDL were measured. Bivariate and partial correlations (controlling for body mass index) were utilized to determine associations among variables. Results: MVPA (1640 [1176] kcal·wk−1) was correlated with superoxide dismutase 2 (r = .55), catalase (r = .55), glutathione peroxidase 1 (r = .48), and 8-OHdG (r = −.41) (all Ps < .05), but not oxidized LDL. MVPA and 8-OHdG were not significantly correlated when controlling for body mass index (r = −.29). Estimated maximal oxygen consumption was correlated with glutathione peroxidase 1 (r = .48; P < .05). Conclusions: These data show that skeletal muscle endogenous antioxidant expression and circulating oxidative damage are associated with habitual MVPA in older adults. Thus, MVPA in older adults may be protective against reactive oxygen species damage due to higher expression of endogenous antioxidants.

The authors are with the Department of of Kinesiology, Nutrition and Health, College of Education, Health and Society, Miami University, Oxford, OH, USA.

Timmerman (timmerkl@miamioh.edu) is corresponding author.
  • 1.

    Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem. 2002;80(5):780787. PubMed ID: 11948241 doi:10.1046/j.0022-3042.2002.00744.x.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016;7:486. PubMed ID: 27872595

  • 3.

    Kohchi C, Inagawa H, Nishizawa T, Soma G. Ros and innate immunity. Anticancer Res. 2009;29(3):817821. PubMed ID: 19414314

  • 4.

    Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ros) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981990. PubMed ID: 22286106 doi:10.1016/j.cellsig.2012.01.008.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):4484. PubMed ID: 16978905 doi:10.1016/j.biocel.2006.07.001.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Fulle S, Protasi F, Di Tano G, et al. The contribution of reactive oxygen species to sarcopenia and muscle ageing. Exp Gerontol. 2004;39(1):1724. PubMed ID: 14724060 doi:10.1016/j.exger.2003.09.012.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Manoharan S, Guillemin GJ, Abiramasundari RS, Essa MM, Akbar M, Akbar MD. The role of reactive oxygen species in the pathogenesis of alzheimer’s disease, parkinson’s disease, and huntington’s disease: a mini review. Oxid Med Cell Longev. 2016;2016:8590578. PubMed ID: 28116038 doi:10.1155/2016/8590578

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010;2010:453892. PubMed ID: 20182627 doi:10.1155/2010/453892

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Panth N, Paudel KR, Parajuli K. Reactive oxygen species: a key hallmark of cardiovascular disease. Adv Med. 2016;2016:9152732. PubMed ID: 27774507 doi:10.1155/2016/9152732

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):8996.

  • 11.

    Palomero J, Vasilaki A, Pye D, McArdle A, Jackson MJ. Aging increases the oxidation of dichlorohydrofluorescein in single isolated skeletal muscle fibers at rest, but not during contractions. Am J Physiol Regul Integr Comp Physiol. 2013;305(4):R351R358. PubMed ID: 23697797 doi:10.1152/ajpregu.00530.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jackson MJ, McArdle A. Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species. J Physiol. 2011;589(9):21392145. PubMed ID: 21320885 doi:10.1113/jphysiol.2011.206623

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Terrill JR, Radley-Crabb HG, Iwasaki T, Lemckert FA, Arthur PG, Grounds MD. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies. FEBS J. 2013;280(17):41494164. PubMed ID: 23332128 doi:10.1111/febs.12142.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Stadtman ER. Protein oxidation and aging. Free Radic Res. 2006;40(12):12501258. PubMed ID: 17090414 doi:10.1080/10715760600918142

  • 15.

    Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta. 2001;305(1–2):7580. PubMed ID: 11249925

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bhatti JS, Kumar S, Vijayan M, Bhatti GK, Reddy PH. Therapeutic strategies for mitochondrial dysfunction and oxidative stress in age-related metabolic disorders. Prog Mol Biol Transl Sci. 2017;146:1346. PubMed ID: 28253984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Leeuwenburgh C, Hollander J, Leichtweis S, Griffiths M, Gore M, Ji LL. Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Physiol. 1997;272(1, pt 2):R363369. PubMed ID: 9039030

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Leeuwenburgh C, Fiebig R, Chandwaney R, Ji LL. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Physiol. 1994;267(2, pt 2):R439445. PubMed ID: 8067452

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Criswell D, Powers S, Dodd S, et al. High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc. 1993;25(10):11351140. PubMed ID: 8231758 doi:10.1249/00005768-199310000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Higuchi M, Cartier LJ, Chen M, Holloszy JO. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J Gerontol. 1985;40(3):281286. PubMed ID: 3989240 doi:10.1093/geronj/40.3.281

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Meijer EP, Goris AH, van Dongen JL, Bast A, Westerterp KR. Exercise-induced oxidative stress in older adults as a function of habitual activity level. J Am Geriatr Soc. 2002;50(2):349353. PubMed ID: 12028219 doi:10.1046/j.1532-5415.2002.50069.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Nyberg M, Mortensen SP, Cabo H, Gomez-Cabrera MC, Vina J, Hellsten Y. Roles of sedentary aging and lifelong physical activity in exchange of glutathione across exercising human skeletal muscle. Free Radic Biol Med. 2014;73:166173. PubMed ID: 24858720 doi:10.1016/j.freeradbiomed.2014.05.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Harada ND, Chiu V, King AC, Stewart AL. An evaluation of three self-report physical activity instruments for older adults. Med Sci Sports Exerc. 2001;33(6):962970. PubMed ID: 11404662 doi:10.1097/00005768-200106000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Stewart AL, Mills KM, King AC, Haskell WL, Gillis D, Ritter PL. Champs physical activity questionnaire for older adults: outcomes for interventions. Med Sci Sports Exerc. 2001;33(7):11261141. PubMed ID: 11445760 doi:10.1097/00005768-200107000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Colbert LH, Matthews CE, Havighurst TC, Kim K, Schoeller DA. Comparative validity of physical activity measures in older adults. Med Sci Sports Exerc. 2011;43(5):867876. PubMed ID: 20881882 doi:10.1249/MSS.0b013e3181fc7162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pruitt LA, Glynn NW, King AC, et al. Use of accelerometry to measure physical activity in older adults at risk for mobility disability. J Aging Phys Act. 2008;16(4):416434. PubMed ID: 19033603 doi:10.1123/japa.16.4.416

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and met intensities. Med Sci Sports Exerc. 2000;32(9 suppl):S498S516. doi:10.1097/00005768-200009001-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153156. PubMed ID: 11153730 doi:10.1016/S0735-1097(00)01054-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Beekley MD, Brechue WF, deHoyos DV, Garzarella L, Werber-Zion G, Pollock ML. Cross-validation of the ymca submaximal cycle ergometer test to predict VO2max. Res Q Exerc Sport. 2004;75(3):337342. PubMed ID: 15487296 doi:10.1080/02701367.2004.10609165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Gouzi F, Maury J, Molinari N, et al. Reference values for vastus lateralis fiber size and type in healthy subjects over 40 years old: a systematic review and metaanalysis. J Appl Physiol. 2013;115(3):346354. doi:10.1152/japplphysiol.01352.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    American College of Sports Medicine. Guidelines for Exercise Testing and Prescription. 10th ed. Baltimore, MD: Lippincott Williams & Wilkins; 2018.

    • Search Google Scholar
    • Export Citation
  • 32.

    LaCroix AZ, Bellettiere J, Rillamas-Sun E, et al. Association of light physical activity measured by accelerometry and incidence of coronary heart disease and cardiovascular disease in older women. JAMA Netw Open. 2019;2(3):e190419. PubMed ID: 30874775 doi:10.1001/jamanetworkopen.2019.0419

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Huang G, Wang R, Chen P, Huang SC, Donnelly JE, Mehlferber JP. Dose–response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. Eur J Prev Cardiol. 2016;23(5):518529. PubMed ID: 25901000 doi:10.1177/2047487315582322

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Di Meo S, Napolitano G, Venditti P. Mediators of physical activity protection against ros-linked skeletal muscle damage. Int J Mol Sci. 2019;20(12):3024. PubMed ID: 31226872 doi:10.3390/ijms20123024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, Pithon-Curi TC. Effects of aerobic exercise training on antioxidant enzyme activities and mrna levels in soleus muscle from young and aged rats. Mech Ageing Dev. 2007;128(3):267275. PubMed ID: 17224177 doi:10.1016/j.mad.2006.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Venditti P, Di Meo S. Effect of training on antioxidant capacity, tissue damage, and endurance of adult male rats. Int J Sports Med. 1997;18(7):497502. PubMed ID: 9414071 doi:10.1055/s-2007-972671

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Venditti P, Di Meo S. Antioxidants, tissue damage, and endurance in trained and untrained young male rats. Arch Biochem Biophys. 1996;331(1):6368. PubMed ID: 8660684 doi:10.1006/abbi.1996.0283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Laughlin MH, Simpson T, Sexton WL, Brown OR, Smith JK, Korthuis RJ. Skeletal muscle oxidative capacity, antioxidant enzymes, and exercise training. J Appl Physiol. 1990;68(6):23372343. doi:10.1152/jappl.1990.68.6.2337.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Powers SK, Criswell D, Lawler J, et al. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol. 1994;266(2, pt 2):R375380. PubMed ID: 8141392

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Hollander J, Fiebig R, Gore M, et al. Superoxide dismutase gene expression in skeletal muscle: fiber-specific adaptation to endurance training. Am J Physiol. 1999;277(3):R856862. PubMed ID: 10484504

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Oh-ishi S, Toshinai K, Kizaki T, et al. Effects of aging and/or training on antioxidant enzyme system in diaphragm of mice. Respir Physiol. 1996;105(3):195202. doi:10.1016/0034-5687(96)00057-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Parise G, Phillips SM, Kaczor JJ, Tarnopolsky MA. Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radic Biol Med. 2005;39(2):289295. PubMed ID: 15964520 doi:10.1016/j.freeradbiomed.2005.03.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hellsten Y, Apple FS, Sjodin B. Effect of sprint cycle training on activities of antioxidant enzymes in human skeletal muscle. J Appl Physiol. 1996;81(4):14841487. doi:10.1152/jappl.1996.81.4.1484

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Johnson ML, Irving BA, Lanza IR, et al. Differential effect of endurance training on mitochondrial protein damage, degradation, and acetylation in the context of aging. J Gerontol A Biol Sci Med Sci. 2015;70(11):13861393. PubMed ID: 25504576 doi:10.1093/gerona/glu221

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Gliemann L, Schmidt JF, Olesen J, et al. Resveratrol blunts the positive effects of exercise training on cardiovascular health in aged men. J Physiol. 2013;591(20):50475059. PubMed ID: 23878368 doi:10.1113/jphysiol.2013.258061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Pialoux V, Brown AD, Leigh R, Friedenreich CM, Poulin MJ. Effect of cardiorespiratory fitness on vascular regulation and oxidative stress in postmenopausal women. Hypertension. 2009;54(5):10141020. PubMed ID: 19786647 doi:10.1161/HYPERTENSIONAHA.109.138917

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Rousseau AS, Margaritis I, Arnaud J, Faure H, Roussel AM. Physical activity alters antioxidant status in exercising elderly subjects. J Nutr Biochem. 2006;17(7):463470. PubMed ID: 16443361 doi:10.1016/j.jnutbio.2005.10.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Shanely RA, Nieman DC, Henson DA, Jin F, Knab AM, Sha W. Inflammation and oxidative stress are lower in physically fit and active adults. Scand J Med Sci Sports. 2013;23(2):215223. PubMed ID: 22092747 doi:10.1111/j.1600-0838.2011.01373.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Pierce GL, Donato AJ, LaRocca TJ, Eskurza I, Silver AE, Seals DR. Habitually exercising older men do not demonstrate age-associated vascular endothelial oxidative stress. Aging Cell. 2011;10(6):10321037. PubMed ID: 21943306 doi:10.1111/j.1474-9726.2011.00748.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Covas MI, Elosua R, Fito M, Alcantara M, Coca L, Marrugat J. Relationship between physical activity and oxidative stress biomarkers in women. Med Sci Sports Exerc. 2002;34(5):814819. PubMed ID: 11984300 doi:10.1097/00005768-200205000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Katerji M, Filippova M, Duerksen-Hughes P. Approaches and methods to measure oxidative stress in clinical samples: research applications in the cancer field. Oxid Med Cell Longev. 2019;2019:1279250. PubMed ID: 30992736 doi:10.1155/2019/1279250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Morton JP, Maclaren DP, Cable NT, et al. Trained men display increased basal heat shock protein content of skeletal muscle. Med Sci Sports Exerc. 2008;40(7):12551262. PubMed ID: 18580405 doi:10.1249/MSS.0b013e31816a7171

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 251 251 59
Full Text Views 15 15 2
PDF Downloads 9 9 1