Effectiveness of Structured Physical Activity Interventions Through the Evaluation of Physical Activity Levels, Adoption, Retention, Maintenance, and Adherence Rates: A Systematic Review and Meta-Analysis

in Journal of Physical Activity and Health

Click name to view affiliation

Nadja Willinger
Search for other papers by Nadja Willinger in
Current site
Google Scholar
PubMed
Close
,
James Steele
Search for other papers by James Steele in
Current site
Google Scholar
PubMed
Close
,
Lou Atkinson
Search for other papers by Lou Atkinson in
Current site
Google Scholar
PubMed
Close
,
Gary Liguori
Search for other papers by Gary Liguori in
Current site
Google Scholar
PubMed
Close
,
Alfonso Jimenez
Search for other papers by Alfonso Jimenez in
Current site
Google Scholar
PubMed
Close
,
Steve Mann
Search for other papers by Steve Mann in
Current site
Google Scholar
PubMed
Close
, and
Elizabeth Horton
Search for other papers by Elizabeth Horton in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Structured physical activity (PA) interventions (ie, intentionally planned) can be implemented in a variety of facilities, and therefore can reach a large proportion of the population. The aim of the authors was to summarize the effectiveness of structured interventions upon PA outcomes, in addition to proportions of individuals adopting and maintaining PA, and adherence and retention rates. Methods: Systematic review with narrative synthesis and exploratory meta-analyses. Twelve studies were included. Results: Effectiveness on PA levels during adoption (pre- to first time point) showed a trivial standardized effect (0.15 [−0.06 to 0.36]); during maintenance (any time point after the first and >6 mo since initiation) the standardized effect was also trivial with a wide interval estimate (0.19 [−0.68 to 1.07]). Few studies reported adoption (k = 3) or maintenance rates (k = 2). Retention at follow-up did not differ between structured PA or controls (75.1% [65.0%–83.0%] vs 75.4% [67.0%–82.3%]), nor did intervention adherence (63.0% [55.6%–69.6%] vs 77.8% [19.4%–98.1%]). Conclusion: Structured PA interventions lack evidence for effectiveness in improving PA levels. Furthermore, though retention is often reported and is similar between interventions and controls, adoption, maintenance, and adherence rates were rarely reported rendering difficulty in interpreting results of effectiveness of structured PA interventions.

Willinger and Horton are with the Coventry University, Coventry, United Kingdom. Steele is with the ukactive Research Institute, London, United Kingdom; and the Solent University, Southampton, United Kingdom. Atkinson is with the Aston University, Birmingham, United Kingdom. Liguori is with The University of Rhode Island, Kingston, RI. Jimenez is with the GO FIT Lab, Ingesport, Madrid, Spain; the Advanced Wellbeing Research Centre, Sheffield Hallam University, Sheffield, United Kingdom; and the Centre for Sports Studies, Universidad Rey Juan Carlos, Madrid, Spain. Mann is with the 4global, London, United Kingdom.

Willinger (willingn@uni.coventry.ac.uk) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 520 KB)
    • Supplementary Table S2 (PDF 390 KB)
  • Collapse
  • Expand
  • 1.

    World Health Organisation (WHO). Prevalence of insufficient physical activity among adults: Data by WHO region. 2018. https://apps.who.int/gho/data/view.main.2482?lang=en

    • Search Google Scholar
    • Export Citation
  • 2.

    Sport England. Active Lives Adult Survey—November 17/18 report. 2019. https://www.sportengland.org/media/13898/active-lives-adult-november-17-18-report.pdf

    • Search Google Scholar
    • Export Citation
  • 3.

    Slade SC, Dionne CE, Underwood M, et al. Consensus on exercise reporting template (CERT): modified Delphi study. Phys Ther. 2016;96(10):15141524. PubMed ID: 27149962 doi:10.2522/ptj.20150668

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    World Health Organisation (WHO). Noncommunicable diseases and mental health; Target 3: Reduce prevalence of physical inactivity. 2018. http://www.who.int/nmh/ncd-tools/target3/en/

    • Search Google Scholar
    • Export Citation
  • 5.

    Kahlert D. Maintenance of physical activity: do we know what we are talking about? Prev Med Rep. 2015;2:178180. PubMed ID: 26844069 doi:10.1016/j.pmedr.2015.02.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Marcus BH, Dubbert PM, Forsyth LH, et al. Physical activity behavior change: issues in adoption and maintenance. Heal Psychol. 2000;19(1):3241. doi:10.1037/0278-6133.19.Suppl1.32

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Fjeldsoe B, Neuhaus M, Winkler E, Eakin E. Systematic review of maintenance of behaviour change following physical activity and dietary interventions. Health Psychol. 2011;30(1):99109. PubMed ID: 21299298 doi:10.1037/a0021974

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Prochaska JO, DiClemente CC. Transtheoretical therapy: toward a more integrative model of change. Psychother Theory, Res Pract. 1982;19(3):276288. doi:10.1037/h0088437

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Howlett N, Trivedi D, Troop NA, Chater AM. Are physical activity interventions for healthy inactive adults effective in promoting behavior change and maintenance, and which behavior change techniques are effective? A systematic review and meta-analysis. Transl Behav Med. 2019;9(1):147157. PubMed ID: 29506209 doi:10.1093/tbm/iby010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700. doi:10.1136/bmj.b2700

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017;358:j4008. doi:10.1136/bmj.j4008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Michie S, Richardson M, Johnston M, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):8195. PubMed ID: 23512568 doi:10.1007/s12160-013-9486-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Furlan AD, Pennick V, Bombardier C, van Tulder M, Editorial Board, Cochrane Back Review Group. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine. 2009;34(18):19291941. doi:10.1097/BRS.0b013e3181b1c99f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration. March 2011. http://www.handbook.cochrane.org

    • Search Google Scholar
    • Export Citation
  • 15.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge; 1988.

  • 16.

    Dunn AL, Marcus BH, Kampert JB, Garcia ME, Kohl HW III, Blair SN. Reduction in cardiovascular disease risk factors: 6-month results from Project Active. Prev Med. 1997;26(6):883892. doi:10.1006/pmed.1997.0218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dunn AL, Marcus BH, Kampert JB, Garcia ME, Kohl HW, Blair SN. Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness: a randomized trial. JAMA. 1999;281(4):327334. PubMed ID: 9929085 doi:10.1001/jama.281.4.327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Young DR, Stewart KJ. A church-based physical activity intervention for African American women. Fam Community Heal J Heal Promot Maint. 2006;29(2):103117. doi:10.1097/00003727-200604000-00006

    • Search Google Scholar
    • Export Citation
  • 19.

    Lee C, White SW. Controlled trial of a minimal-intervention exercise program for middle-aged working women. Psychol Health. 1997;12(3):361374. doi:10.1080/08870449708406713

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Arredondo EM, Elder JP, Haughton J, et al. Fe en accion: promoting physical activity among churchgoing Latinas. Am J Public Health. 2017;107(7):11091115. PubMed ID: 28520484 doi:10.2105/AJPH.2017.303785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    De Jong J, Lemmink KAPM, Stevens M, et al. Six-month effects of the Groningen active living model (GALM) on physical activity, health and fitness outcomes in sedentary and underactive older adults aged 55–65. Patient Educ Couns. 2006;62(1):132141. PubMed ID: 16098704 doi:10.1016/j.pec.2005.06.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Cox TJ, Puddey TJ, Burke TJ, Beilin TJ, Gorely TJ. Exercise behaviour change in 40 to 65-year-old women: the SWEAT Study (Sedentary Women Exercise Adherence Trial). Br J Health Psychol. 2003;8(4):477495. doi:10.1348/135910703770238329

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hovell MF, Mulvihill MM, Buono MJ, et al. Culturally tailored aerobic exercise intervention for low-income Latinas. Am J Heal Promot. 2008;22(3):155163. doi:10.4278/ajhp.22.3.155

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hertogh EM, Vergouwe Y, Schuit AJ, Peeters PHM, Monninkhof EM. Behavioral changes after a 1-yr exercise program and predictors of maintenance. Med Sci Sport Exerc. 2010;42(5):886892. doi:10.1249/MSS.0b013e3181c4d964

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kettunen O, Vuorimaa T, Vasankari T. A 12-month exercise intervention decreased stress symptoms and increased mental resources among working adults—results perceived after a 12-month follow-up. Int J Occup Med Environ Heal. 2015;28(1):157168. doi:10.13075/ijomeh.1896.00263

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kukkonen K, Rauramaa R, Siitonen O, Hänninen O. Physical training of obese middle-aged persons. Ann Clin Res. 1982;14(34):8085.

  • 27.

    Yang K, James KA. Yoga, as a transitional platform to more active lifestyle: a 6-month pilot study in the USA. Health Promot Int. 2016;31(2):423429. doi:10.1093/heapro/dau108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    King A, Haskell W, Young D, Oka R, Stefanick M. Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation. 1995;91(10):2596. PubMed ID: 7743622 doi:10.1161/01.CIR.91.10.2596

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cox KL, Burke V, Gorely TJ, Beilin LJ, Puddey IB. Controlled comparison of retention and adherence in home- vs center-initiated exercise interventions in women ages 40–65 years: the S.W.E.A.T. Study (Sedentary Women Exercise Adherence Trial). Prev Med. 2003;36(1):1729. doi:10.1006/pmed.2002.1134

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Stubbs B, Vancampfort D, Rosenbaum S, et al. Dropout from exercise randomized controlled trials among people with depression: a meta-analysis and meta regression. J Affect Disord. 2016;190:457466. PubMed ID: 26551405 doi:10.1016/j.jad.2015.10.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Murray JM, Brennan SF, French DP, Patterson CC, Kee F, Hunter RF. Effectiveness of physical activity interventions in achieving behaviour change maintenance in young and middle aged adults: a systematic review and meta-analysis. Soc Sci Med. 2017;192:125133. PubMed ID: 28965003 doi:10.1016/j.socscimed.2017.09.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Michie S, Abraham C, Eccles MP, Francis JJ, Hardeman W, Johnston M. Strengthening evaluation and implementation by specifying components of behaviour change interventions: a study protocol. Implement Sci. 2011;6(10):18. doi:10.1186/1748-5908-6-10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ross R, Blair SN, Arena R, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(24):e653e699. PubMed ID: 27881567 doi:10.1161/CIR.0000000000000461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Vancampfort D, Mugisha J, Richards J, et al. Dropout from physical activity interventions in people living with HIV: a systematic review and meta-analysis. AIDS Care. 2017;29(5):636643. PubMed ID: 27794625 doi:10.1080/09540121.2016.1248347

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Vancampfort D, Rosenbaum S, Schuch FB, Ward PB, Probst M, Stubbs B. Prevalence and predictors of treatment dropout from physical activity interventions in schizophrenia: a meta-analysis. Gen Hosp Psychiatry. 2016;39:1523. PubMed ID: 26719106 doi:10.1016/j.genhosppsych.2015.11.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Joseph RP, Ainsworth BE, Keller C, Dodgson JE. Barriers to physical activity among African American women: an integrative review of the literature. Women Health. 2015;55(6):679699. PubMed ID: 25909603 doi:10.1080/03630242.2015.1039184

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Thomas T, Haase N, Rosamond W. American Heart Association heart disease and stroke statistics—2006 update. Circulation. 2006;113(6):e85e151. doi:10.1161/circulationaha.105.171600

    • Search Google Scholar
    • Export Citation
  • 38.

    Peter I, Papandonatos GD, Belalcazar LM, et al. Genetic modifiers of cardiorespiratory fitness response to lifestyle intervention. Med Sci Sports Exerc. 2014;46(2):302311. PubMed ID: 23899896 doi:10.1249/MSS.0b013e3182a66155

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Montero D, Lundby C. Refuting the myth of non-response to exercise training: “non-responders” do respond to higher dose of training. J Physiol. 2017;595(11):33773387. PubMed ID: 28133739 doi:10.1113/JP273480

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ross R, de Lannoy L, Stotz PJ. Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clin Proc. 2015;90(11):15061514. PubMed ID: 26455890 doi:10.1016/j.mayocp.2015.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Public Health England. Identifying what works for local physical inactivity interventions. 2014. http://researchinstitute.ukactive.com/downloads/managed/Identifying_what_works.pdf.

    • Search Google Scholar
    • Export Citation
  • 42.

    National Institute for Health and Care Excellence (NICE). Physical activity: brief advice for adults in primary care. 2013. https://www.nice.org.uk/guidance/ph44/resources/physical-activity-brief-advice-for-adults-in-primary-care-pdf-1996357939909. Accessed June 19, 2020.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 14534 1731 30
Full Text Views 282 20 0
PDF Downloads 230 22 0