The Impact of Pulmonary Rehabilitation on 24-Hour Movement Behavior in People With Chronic Obstructive Pulmonary Disease: New Insights From a Compositional Perspective

Click name to view affiliation

Angela T. Burge
Search for other papers by Angela T. Burge in
Current site
Google Scholar
PubMed
Close
,
Javier Palarea-Albaladejo
Search for other papers by Javier Palarea-Albaladejo in
Current site
Google Scholar
PubMed
Close
,
Anne E. Holland
Search for other papers by Anne E. Holland in
Current site
Google Scholar
PubMed
Close
,
Michael J. Abramson
Search for other papers by Michael J. Abramson in
Current site
Google Scholar
PubMed
Close
,
Christine F. McDonald
Search for other papers by Christine F. McDonald in
Current site
Google Scholar
PubMed
Close
,
Ajay Mahal
Search for other papers by Ajay Mahal in
Current site
Google Scholar
PubMed
Close
,
Catherine J. Hill
Search for other papers by Catherine J. Hill in
Current site
Google Scholar
PubMed
Close
,
Annemarie L. Lee
Search for other papers by Annemarie L. Lee in
Current site
Google Scholar
PubMed
Close
,
Narelle S. Cox
Search for other papers by Narelle S. Cox in
Current site
Google Scholar
PubMed
Close
,
Aroub Lahham
Search for other papers by Aroub Lahham in
Current site
Google Scholar
PubMed
Close
,
Rosemary Moore
Search for other papers by Rosemary Moore in
Current site
Google Scholar
PubMed
Close
,
Caroline Nicolson
Search for other papers by Caroline Nicolson in
Current site
Google Scholar
PubMed
Close
,
Paul O’Halloran
Search for other papers by Paul O’Halloran in
Current site
Google Scholar
PubMed
Close
,
Rebecca Gillies
Search for other papers by Rebecca Gillies in
Current site
Google Scholar
PubMed
Close
, and
Sebastien F.M. Chastin
Search for other papers by Sebastien F.M. Chastin in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Physical activity levels are low in people with chronic obstructive pulmonary disease, and there is limited knowledge about how pulmonary rehabilitation transforms movement behaviors. This study analyzed data from a pulmonary rehabilitation trial and identified determinants of movement behaviors. Methods: Objectively assessed time in daily movement behaviors (sleep, sedentary, light-intensity physical activity, and moderate- to vigorous-intensity physical activity) from a randomized controlled trial (n = 73 participants) comparing home- and center-based pulmonary rehabilitation was analyzed using conventional and compositional analytical approaches. Regression analysis was used to assess relationships between movement behaviors, participant features, and response to the interventions. Results: Compositional analysis revealed no significant differences in movement profiles between the home- and center-based groups. At end rehabilitation, conventional analyses identified positive relationships between exercise capacity (6-min walk distance), light-intensity physical activity, and moderate- to vigorous-intensity physical activity time. Compositional analyses identified positive relationships between a 6-minute walk distance and moderate- to vigorous-intensity physical activity time, accompanied by negative relationships with sleep and sedentary time (relative to other time components) and novel relationships between body mass index and light-intensity physical activity/sedentary time. Conclusion: Compositional analyses following pulmonary rehabilitation identified unique associations between movement behaviors that were not evident in conventional analyses.

Burge, Holland, Cox, Lahham, Nicolson, and Gillies are with the Discipline of Physiotherapy, La Trobe University, Melbourne, VIC, Australia. Burge, Holland, Lee, and Nicolson are also with the Department of Physiotherapy, Alfred Health, Melbourne, VIC, Australia. Burge, Holland, McDonald, Hill, Lee, Cox, Lahham, and Moore are also with the Institute for Breathing and Sleep, Melbourne, VIC, Australia. Burge, Holland, Cox, and Lahham are also with the Department of Allergy, Clinical Immunology and Respiratory Medicine, Monash University, Melbourne, VIC, Australia. Palarea-Albaladejo is with the Biomathematics and Statistics Scotland, JCMB, Edinburgh, United Kingdom. Abramson is with the Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia. McDonald is also with the Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, VIC, Australia; and the Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia. Mahal is with the Nossal Institute for Global Health, The University of Melbourne, Melbourne, VIC, Australia. Hill and Gillies are also with the Department of Physiotherapy, Austin Health, Melbourne, VIC, Australia. Lee is also with the Department of Physiotherapy, Monash University, Melbourne, VIC, Australia. O’Halloran is with the Department of Public Health, La Trobe University, Melbourne, VIC, Australia. Chastin is with the School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom; and the Department of Movement and Sports Science, Ghent University, Ghent, Belgium.

Burge (a.burge@alfred.org.au) is corresponding author.

Supplementary Materials

    • Supplementary Equation S1 (PDF 834 KB)
    • Supplementary Figure S1 (PDF 556 KB)
    • Supplementary Figure S2 (PDF 521 KB)
    • Supplementary Figure S3 (PDF 536 KB)
    • Supplementary Figure S4 (PDF 520 KB)
    • Supplementary Table S1 (PDF 488 KB)
    • Supplementary Table S2 (PDF 717 KB)
    • Supplementary Table S3 (PDF 708 KB)
    • Supplementary Table S4 (PDF 498 KB)
    • Supplementary Table S5 (PDF 676 KB)
  • Collapse
  • Expand
  • 1.

    From the Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) Report. http://goldcopd.org. Published 2020. Accessed April 30, 2020.

    • Search Google Scholar
    • Export Citation
  • 2.

    Furlanetto K, Mantoani L, Bisca G, et al. Reduction of physical activity in daily life and its determinants in smokers without airflow obstruction. Respirology. 2014;19(3):369375. PubMed ID: 24483840 doi:10.1111/resp.12236

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Johnson-Warrington V, Harrison S, Mitchell K, Steiner M, Morgan M, Singh S. Exercise capacity and physical activity in patients with COPD and healthy subjects classified as Medical Research Council dyspnoea scale grade 2. J Cardiopulm Rehabil. 2014;34(2):150154. PubMed ID: 24457985 doi:10.1097/HCR.0000000000000038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Shrikrishna D, Patel M, Tabber R, et al. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J. 2012;40(5):11151122. PubMed ID: 22362854 doi:10.1183/09031936.00170111

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Troosters T, Sciurba F, Battaglia S, et al. Physical inactivity in patients with COPD, a controlled multi-center pilot-study. Respir Med. 2010;104(7):10051011. PubMed ID: 20167463 doi:10.1016/j.rmed.2010.01.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Waschki B, Kirsten A, Holz O, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 2011;140(2):331342. PubMed ID: 21273294 doi:10.1378/chest.10-2521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Pitta F, Troosters T, Spruit M, Probst V, Decramer M, Gosselink R. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171(9):972977. PubMed ID: 15665324 doi:10.1164/rccm.200407-855OC

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Arne M, Janson C, Janson S, et al. Physical activity and quality of life in subjects with chronic obstructive pulmonary disease compared with rheumatoid arthritis and diabetes mellitus. Scand J Prim Health Care. 2009;27(3):141147. PubMed ID: 19306158 doi:10.1080/02813430902808643

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Vorrink S, Kort H, Troosters T, Lammers J. Level of daily physical activity in individuals with COPD compared to healthy controls. Respir Res. 2011;12(1):33. PubMed ID: 21426563 doi:10.1186/1465-9921-12-33

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Theorell-Haglow J, Olafsdottir I, Benediktsdottir B, Gislason T, Lindberg E, Janson C. Sex differences in reported and objectively measured sleep in COPD. Int J Chronic Obstr. 2016;11:151160. PubMed ID: 26869781 doi:10.2147/COPD.S94268

    • Search Google Scholar
    • Export Citation
  • 11.

    Van Remoortel H, Hornikx M, Langer D, et al. Risk factors and comorbidities in the preclinical stage of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189(1):3038. PubMed ID: 24219412 doi:10.1164/rccm.201307-1240OC

    • Search Google Scholar
    • Export Citation
  • 12.

    Watz H, Waschki B, Meyer T, Magnussen H. Physical activity in patient with COPD. Eur Respir J. 2009;33(2):262272. PubMed ID: 19010994 doi:10.1183/09031936.00024608

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Garcia-Rio F, Rojo B, Casitas R, et al. Prognostic value of the objective measurement of daily physical activity in patients with COPD. Chest. 2012;142(2):338346. PubMed ID: 22281798 doi:10.1378/chest.11-2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Vaes A, Garcia-Aymerich J, Marott J, et al. Changes in physical activity and all-cause mortality in COPD. Eur Respir J. 2014;44(5):11991209. PubMed ID: 25063247 doi:10.1183/09031936.00023214

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Omachi T, Blanc P, Claman D, et al. Disturbed sleep among COPD patients is longitudinally associated with mortality and adverse COPD outcomes. Sleep Med. 2012;13(5):476483. PubMed ID: 22429651 doi:10.1016/j.sleep.2011.12.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Burge A, Cox N, Abramson M, Holland A. Interventions for promoting physical activity in people with chronic obstructive pulmonary disease (COPD). Cochrane Database Syst Rev. 2020;4(4):CD012626. PubMed ID: 32297320 doi:10.1002/14651858.CD012626.pub2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lahham A, McDonald C, Holland A. Exercise training alone or with the addition of activity counseling improves physical activity levels in COPD: a systematic review and meta-analysis of randomized controlled trials. Int J Chron Obstruct Pulmon Dis. 2016;11:31213136. PubMed ID: 27994451 doi:10.2147/COPD.S121263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Spruit M, Pitta F, McAuley E, ZuWallack R, Nici L. Pulmonary rehabilitation and physical activity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(8):924933. PubMed ID: 26161676 doi:10.1164/rccm.201505-0929CI

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cox N, Pepin V, Burge A, et al. Pulmonary rehabilitation does not improve objective measures of sleep quality in people with chronic obstructive pulmonary disease. COPD. 2019;16(1):2529. PubMed ID: 30884984 doi:10.1080/15412555.2019.1567701

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pedišić Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research—the focus should shift to the balance between sleep, sedentary behaviour, standing and activity. Kinesiology. 2014;46(1):135146.

    • Search Google Scholar
    • Export Citation
  • 21.

    Chaput J, Carson V, Gray C, Tremblay M. Importance of all movement behaviors in a 24 hour period for overall health. Int J Environ Res Public Health. 2014;11(12):1257512581. PubMed ID: 25485978 doi:10.3390/ijerph111212575

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Aitchison J. The statistical analysis of compositional data. J R Stat Soc Series B. 1982;44(2):139177.

  • 23.

    Chastin S, Palarea-Albaladejo J, Dontje MS, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984. PubMed ID: 26461112 doi:10.1371/journal.pone.0139984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Dumuid D, Stanford T, Martin-Fernández J, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res. 2018;27(12):37263738. PubMed ID: 28555522 doi:10.1177/0962280217710835

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hunt T, Williams M, Olds T, Dumuid D. Patterns of time use across the chronic obstructive pulmonary disease severity spectrum. Int J Environ Res Public Health. 2018;15(3):533. PubMed ID: 29547535 doi:10.3390/ijerph15030533

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lewthwaite H, Olds T, Williams M, Effing T, Dumuid D. Use of time in chronic obstructive pulmonary disease: longitudinal associations with symptoms and quality of life using a compositional analysis approach. PLoS One. 2019;14(3):e0214058. PubMed ID: 30897134 doi:10.1371/journal.pone.0214058

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Holland A, Mahal A, Hill C, et al. Benefits and costs of home-based pulmonary rehabilitation in chronic obstructive pulmonary disease – a multi-centre randomised controlled equivalence trial. BMC Pulm Med. 2013;13(1):57. PubMed ID: 24011178 doi:10.1186/1471-2466-13-57

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Holland A, Mahal A, Hill C, et al. Home-based rehabilitation for COPD using minimal resources: a randomised, controlled equivalence trial. Thorax. 2017;72(1):5765. PubMed ID: 27672116 doi:10.1136/thoraxjnl-2016-208514

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Liacos A, McDonald C, Mahal A, et al. The Pulmonary Rehabilitation Adapted Index of Self-Efficacy (PRAISE) tool predicts reduction in sedentary time following pulmonary rehabilitation in people with chronic obstructive pulmonary disease (COPD). Physiotherapy. 2019;105(1):9097. PubMed ID: 30316548 doi:10.1016/j.physio.2018.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Miller W, Rollnick S. Motivational Interviewing: Helping People Change. New York, NY: Guildford Press; 2012.

  • 31.

    Spruit M, Singh S, Garvey C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):e13e64. PubMed ID: 24127811 doi:10.1164/rccm.201309-1634ST

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cote C, Casanova C, Marin J, et al. Validation and comparison of reference equations for the 6-min walk distance test. Eur Respir J. 2008;31(3):571578. PubMed ID: 17989117 doi:10.1183/09031936.00104507

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Williams M, Lewis L, McKeough Z, et al. Reporting of exercise attendance rates for people with chronic obstructive pulmonary disease: a systematic review. Respirology. 2014;19(1):3037. PubMed ID: 24256219 doi:10.1111/resp.12201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Holland A, Hill C, Rasekaba T. Updating the minimal important difference for six-minute walk distance in patients with chronic obstructive pulmonary disease. Arch Phys Med Rehab. 2010;91(2):221225. PubMed ID: 20159125 doi:10.1016/j.apmr.2009.10.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Hill K, Dolmage T, Woon L, Goldstein R, Brooks D. Measurement properties of the SenseWear armband in adults with chronic obstructive pulmonary disease. Thorax. 2010;65(6):486491. PubMed ID: 20522844 doi:10.1136/thx.2009.128702

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Rabinovich R, Louvaris Z, Raste Y, et al. Validity of physical activity monitors during daily life in patients with COPD. Eur Respir J. 2013;42(5):12051215. PubMed ID: 23397303 doi:10.1183/09031936.00134312

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Byrom B, Rowe D. Measuring free-living physical activity in COPD patients: deriving methodology standards for clinical trials through a review of research studies. Contemp Clin Trials. 2016;47:172184. PubMed ID: 26806669 doi:10.1016/j.cct.2016.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Demeyer H, Burtin C, van Reemortel H, et al. Standardizing the analysis of physical activity in patients with COPD following a pulmonary rehabilitation program. Chest. 2014;146(2):318327. PubMed ID: 24603844 doi:10.1378/chest.13-1968

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Haskell W, Lee I, Pate R, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):14231434. PubMed ID: 17762377 doi:10.1249/mss.0b013e3180616b27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Sedentary Behaviour Research Network. Letter to the editor: standardized use of the terms ‘sedentary’ and ‘sedentary behaviours’. Appl Physiol Nutr Metab. 2012;37(3):540542. PubMed ID: 22540258 doi:10.1139/h2012-024

    • Search Google Scholar
    • Export Citation
  • 41.

    Palarea-Albaladejo J, Martín-Fernández J. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intellig Lab Syst. 2015;143:8596. doi:10.1016/j.chemolab.2015.02.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Palarea-Albaladejo J, Martín-Fernández J. A modified EM alr-algorithm for replacing rounded zeros in compositional data sets. Comput Geosci. 2008;34(8):902917. doi:10.1016/j.cageo.2007.09.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Pawlowsky-Glahn V, Egozcue J, Tolosana-Delgado R. Modeling and Analysis of Compositional Data. Chichester, UK: Wiley; 2015.

  • 44.

    Filzmoser P, Hron K, Templ M. Applied Compositional Data Analysis with Worked Examples in R. Cham, Switzerland: Springer; 2018.

  • 45.

    Müller I, Hron K, Fišerová E, Šmahaj J, Cakirpaloglu P, Vancáková J. Interpretation of compositional regression with application to time budget analysis. Austrian J Stat. 2018;47:319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Mekary R, Willett W, Hu F, Ding E. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170(4):519527. PubMed ID: 19584129 doi:10.1093/aje/kwp163

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Osadnik C, Loeckx M, Louvaris Z, et al. The likelihood of improving physical activity after pulmonary rehabilitation is increased in patients with COPD who have better exercise tolerance. Int J Chron Obstruct Pulmon Dis. 2018;13:35153527. PubMed ID: 30498342 doi:10.2147/COPD.S174827

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Cavalheri V, Straker L, Gucciardi D, Gardiner P, Hill K. Changing physical activity and sedentary behaviour in people with COPD. Respirology. 2016;21(3):419426. PubMed ID: 26560834 doi:10.1111/resp.12680

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    de Roos P, Lucas C, Strijbos J, van Trijffel E. Effectiveness of a combined exercise training and home-based walking programme on physical activity compared with standard medical care in moderate COPD: a randomised controlled trial. Physiotherapy. 2017;104(1):116121. PubMed ID: 28802772 doi:10.1016/j.physio.2016.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Donaire-Gonzalez D, Gimeno-Santos E, Balcells E, et al. Benefits of physical activity on COPD hospitalisation depend on intensity. Eur Respir J. 2015;46(5):12811289. PubMed ID: 26206873 doi:10.1183/13993003.01699-2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Cheng S, McKeough Z, Alison J, Dennis S, Hamer M, Stamatakis E. Associations of total and type-specific physical activity with mortality in chronic obstructive pulmonary disease: a population-based cohort study. BMC Public Health. 2018;18(1):268. PubMed ID: 29454345 doi:10.1186/s12889-018-5167-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Shields M, Tremblay M. Sedentary behaviour and obesity. Health Rep. 2008;19:1930. PubMed ID: 18642516

  • 53.

    Langer D, Gosselink R, Sena R, Burtin C, Decramer M, Troosters T. Validation of two activity monitors in patients with COPD. Thorax. 2009;64(7):641642. PubMed ID: 19561287 doi:10.1136/thx.2008.112102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3877 727 40
Full Text Views 88 36 8
PDF Downloads 80 19 0