The Effects of Low-Intensity Multimodal Proprioceptive Exercise on Cognitive Function in Older Adults

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Physical activity provides a number of physical and psychological benefits. Multimodal proprioceptive exercise represents a useful balance-based exercise with the potential to reduce falls in older adults. Previous research has also indicated cognitive benefits following multimodal proprioceptive exercise in young and older adults. This study aimed to assess cognition and mood following 2 types of physical activity (multimodal proprioception vs yoga) compared with control (classroom-based) in healthy older adults. Method: Nineteen older adults (Mage = 65, sex = 9 males) participated in this randomized controlled crossover trial. Participants completed a 20-minute multimodal proprioceptive exercise class, 20-minute yoga session, and 20-minute classroom-based control. Numeric working memory and mood were assessed before and immediately following each of the interventions. Results: The multimodal proprioceptive intervention significantly reduced numeric working memory reaction time versus the yoga (P = .043) and control (P = .023) group. There were no differences found for accuracy or mood. Conclusions: These results indicate that multimodal proprioceptive exercise is worthy of further investigation as an alternative mode of exercise alongside the more traditional aerobic and strength-based exercise for healthy older adults.

Boyle is with the Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom. Fothergill is with the School of Psychology, Newcastle University, Newcastle upon Tyne, United Kingdom. Metcalfe is with the School of Sport and Wellbeing, University of Central Lancashire, Lancashire, United Kingdom. Docherty and Haskell-Ramsay are with the Department of Psychology, Northumbria University, Newcastle upon Tyne, United Kingdom.

Boyle (spencer.boyle@northumbria.ac.uk) is corresponding author.
  • 1.

    Katz PP, Pate R. Exercise as medicine. Ann Intern Med. 2016;165(12):880881. PubMed ID: 27668671 doi:10.7326/M16-2086

  • 2.

    Eggermont L, Swaab D, Luiten P, Scherder E. Exercise, cognition and Alzheimer’s disease: more is not necessarily better. Neurosci Biobehav Rev. 2006;30(4):562575. PubMed ID: 16359729 doi:10.1016/j.neubiorev.2005.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Prakash RS, Voss MW, Erickson KI, Kramer AF. Physical activity and cognitive vitality. Annu Rev Psychol. 2015;66(1):769797. PubMed ID: 25251492 doi:10.1146/annurev-psych-010814-015249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Department of Health. Stay Active: A report on physical activity for health from the four home countries’ Chief Medical Officers. London, UK: Department of Health, Physical Activity, Health Improvement and Protection; 2011.

    • Search Google Scholar
    • Export Citation
  • 5.

    Scholes S, Neave A. Health Survey for England 2016: Physical activity in adults. Leeds, UK: Health and Social Care Information Centre; 2017.

    • Search Google Scholar
    • Export Citation
  • 6.

    Northey JM, Cherbuin N, Pumpa KL, Smee DJ, Rattray B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br J Sports Med. 2018;52(3):154160. PubMed ID: 28438770 doi:10.1136/bjsports-2016-096587

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Etnier JL, Drollette ES, Slutsky AB. Physical activity and cognition: a narrative review of the evidence for older adults. Psychol Sport Exerc. 2019;42:156166. doi:10.1016/j.psychsport.2018.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Smiley-Oyen AL, Lowry KA, Francois SJ, Kohut ML, Ekkekakis P. Exercise, fitness, and neurocognitive function in older adults: the “selective improvement” and “cardiovascular fitness” hypotheses. Ann Behav Med. 2008;36(3):280291. doi:10.1007/s12160-008-9064-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Forte R, Boreham CA, Leite JC, et al. Enhancing cognitive functioning in the elderly: multicomponent vs resistance training. Clin Interv Aging. 2013;8:19. PubMed ID: 23341738 doi:10.2147/CIA.S36514

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    de Asteasu MLS, Martinez-Velilla N, Zambom-Ferraresi F, Casas-Herrero A, Izquierdo M. Role of physical exercise on cognitive function in healthy older adults: a systematic review of randomized clinical trials. Ageing Res Rev. 2017;37:117134. doi:10.1016/j.arr.2017.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Peel NM, Kassulke D, McClure RJ. Population based study of hospitalised fall related injuries in older people. Inj Prev. 2002;8(4):280283. PubMed ID: 12460962 doi:10.1136/ip.8.4.280

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chodzko-Zajko WJ, Proctor DN, Singh MAF, et al. Exercise and physical activity for older adults. Med Sci Sports Exer. 2009;41(7):15101530. PubMed ID: 19516148 doi:10.1249/MSS.0b013e3181a0c95c

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Donath L, van Dieën J, Faude O. Exercise-based fall prevention in the elderly: what about agility? Sports Med. 2016;46(2):143149. PubMed ID: 26395115 doi:10.1007/s40279-015-0389-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McInnes L, Jones E, Rochester L, et al. Mobility in community dwelling older adults: predicting successful mobility using an instrumented battery of novel measures. J Frailty Aging. 2020;9:6873. doi:10.14283/jfa.2019.35

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Malliou P, Gioftsidou A, Pafis G, Beneka A, Godolias G. Proprioceptive training (balance exercises) reduces lower extremity injuries in young soccer players. J Back Musculoskelet Rehabil. 2004;17(3–4):101104. doi:10.3233/BMR-2004-173-403

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Shubert TE, McCulloch K, Hartman M, Giuliani CA. The effect of an exercise-based balance intervention on physical and cognitive performance for older adults: a pilot study. J Geriatr Phys Ther. 2010;33(4):157164. PubMed ID: 21717919 doi:10.1519/JPT.0b013e3181ff22f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Alloway RG, Alloway TP. The working memory benefits of proprioceptively demanding training: a pilot study. Percept Mot Skills. 2015;120(3):766775. PubMed ID: 26029969 doi:10.2466/22.PMS.120v18x1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Browne SE, Flynn MJ, O’Neill BV, Howatson G, Bell PG, Haskell-Ramsay CF. Effects of acute high-intensity exercise on cognitive performance in trained individuals: a systematic review. Prog Brain Res. 2017;234:161187. PubMed ID: 29031462 doi:10.1016/bs.pbr.2017.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lambourne K, Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res. 2010;1341:1224. PubMed ID: 20381468 doi:10.1016/j.brainres.2010.03.091

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Crush EA, Frith E, Loprinzi PD. Experimental effects of acute exercise duration and exercise recovery on mood state. J Affect Disord. 2018;229:282287. PubMed ID: 29329061 doi:10.1016/j.jad.2017.12.092

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hogan CL, Mata J, Carstensen LL. Exercise holds immediate benefits for affect and cognition in younger and older adults. Psychol Aging. 2013;28(2):587594. PubMed ID: 23795769 doi:10.1037/a0032634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Manaf H. Barriers to participation in physical activity and exercise among middle-aged and elderly individuals. Singapore Med J. 2013;54(10):581586. doi:10.11622/smedj.2013203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cox KH, Pipingas A, Scholey AB. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol. 2015;29(5):642651. PubMed ID: 25277322 doi:10.1177/0269881114552744

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Haskell-Ramsay C, Jackson P, Forster J, Dodd F, Bowerbank S, Kennedy D. The acute effects of caffeinated black coffee on cognition and mood in healthy young and older adults. Nutrients. 2018;10(10):1386. doi:10.3390/nu10101386

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Asamoah S, Siegler J, Chang D, Scholey A, Yeung A, Cheema BS. Effect of aerobic training on cognitive function and arterial stiffness in sedentary young adults: a pilot randomized controlled trial. Physiol J. 2013;2013:19. doi:10.1155/2013/847325

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Bond A, Lader M. The use of analogue scales in rating subjective feelings. Br J Med Psychol. 1974;47(3):211218. doi:10.1111/j.2044-8341.1974.tb02285.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sink KM, Espeland MA, Castro CM, et al. Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: the LIFE randomized trial. JAMA. 2015;314(8):781790. PubMed ID: 26305648 doi:10.1001/jama.2015.9617

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Vestberg T, Gustafson R, Maurex L, Ingvar M, Petrovic P. Executive functions predict the success of top-soccer players. PloS One. 2012;7(4):e34731. PubMed ID: 22496850 doi:10.1371/journal.pone.0034731

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Busse AL, Gil G, Santarém JM, Jacob Filho W. Physical activity and cognition in the elderly: a review. Dement Neuropsychol. 2009;3(3):204208. PubMed ID: 29213629 doi:10.1590/S1980-57642009DN30300005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ratey JJ, Loehr JE. The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev Neurosci. 2011;22(2):171185. PubMed ID: 21417955 doi:10.1515/rns.2011.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Patel NK, Newstead AH, Ferrer RL. The effects of yoga on physical functioning and health related quality of life in older adults: a systematic review and meta-analysis. J Altern Complement Med. 2012;18(10):902917. PubMed ID: 22909385 doi:10.1089/acm.2011.0473

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Chang SW, Dickinson AR, Snyder LH. Limb-specific representation for reaching in the posterior parietal cortex. J Neurosci. 2008;28(24):61286140. PubMed ID: 18550755 doi:10.1523/JNEUROSCI.1442-08.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Park J, Park DC, Polk TA. Parietal functional connectivity in numerical cognition. Cereb Cortex. 2013;23(9):21272135. PubMed ID: 22784605 doi:10.1093/cercor/bhs193

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Elkin-Frankston S, Rushmore RJ, Valero-Cabré A. Low frequency transcranial magnetic stimulation of right posterior parietal cortex reduces reaction time to perithreshold low spatial frequency visual stimuli. Sci Rep. 2020;10(1):19. doi:10.1038/s41598-020-59662-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Guan J, Wade MG. The effect of aging on adaptive eye-hand coordination. J Gerontol B Psychol Sci Soc Sci. 2000;55(3):P151P162. doi:10.1093/geronb/55.3.P151

  • 36.

    Ballard DH, Hayhoe MM, Pelz JB. Memory representations in natural tasks. J Cogn Neurosci. 1995;7(1):6680. PubMed ID: 23961754 doi:10.1162/jocn.1995.7.1.66

  • 37.

    Crawford JD, Medendorp WP, Marotta JJ. Spatial transformations for eye–hand coordination. J Neurophysiol. 2004;92(1):1019. PubMed ID: 15212434 doi:10.1152/jn.00117.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Baddeley R, Ingram H, Miall R. System identification applied to a visuomotor task: near-optimal human performance in a noisy changing task. J Neurosci. 2003;23(7):30663075. PubMed ID: 12684493 doi:10.1523/JNEUROSCI.23-07-03066.2003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Flanagan JR, Vetter P, Johansson RS, Wolpert DM. Prediction precedes control in motor learning. Curr Biol. 2003;13(2):146150. PubMed ID: 12546789 doi:10.1016/S0960-9822(03)00007-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Johansson RS, Westling G, Bäckström A, Flanagan JR. Eye–hand coordination in object manipulation. J Neurosci. 2001;21(17):69176932. PubMed ID: 11517279 doi:10.1523/JNEUROSCI.21-17-06917.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Rossetti Y, Koga K, Mano T. Prismatic displacement of vision induces transient changes in the timing of eye-hand coordination. Percept Psychophys. 1993;54(3):355364. PubMed ID: 8414894 doi:10.3758/BF03205270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kerr B, Condon SM, McDonald LA. Cognitive spatial processing and the regulation of posture. J Exp Psychol Hum Percept Perform. 1985;11(5):617622. PubMed ID: 2932533

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Goble DJ, Coxon JP, Van Impe A, et al. The neural basis of central proprioceptive processing in older versus younger adults: an important sensory role for right putamen. Hum Brain Mapp. 2012;33(4):895908. PubMed ID: 21432946 doi:10.1002/hbm.21257

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Tomporowski PD, Pesce C. Exercise, sports, and performance arts benefit cognition via a common process. Psychol Bull. 2019;145(9):929. PubMed ID: 31192623 doi:10.1037/bul0000200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    May A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci. 2011;15(10):475482. PubMed ID: 21906988 doi:10.1016/j.tics.2011.08.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9):22432257. doi:10.1016/j.neubiorev.2013.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Stavrinos EL, Coxon JP. High-intensity interval exercise promotes motor cortex disinhibition and early motor skill consolidation. J Cogn Neurosci. 2017;29(4):593604. PubMed ID: 27897671 doi:10.1162/jocn_a_01078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Statton MA, Encarnacion M, Celnik P, Bastian AJ. A single bout of moderate aerobic exercise improves motor skill acquisition. PloS One. 2015;10(10):e0141393. PubMed ID: 26506413 doi:10.1371/journal.pone.0141393

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Salthouse TA. The aging of working memory. Neuropsychology. 1994;8(4):535543. doi:10.1037/0894-4105.8.4.535

  • 50.

    Salthouse TA. Influence of processing speed on adult age differences in working memory. Acta Psychol. 1992;79(2):155170. PubMed ID: 1598844 doi:10.1016/0001-6918(92)90030-H

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Bo J, Seidler RD. Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences. J Neurophysiol. 2009;101(6):31163125. PubMed ID: 19357338 doi:10.1152/jn.00006.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Bezzola L, Mérillat S, Gaser C, Jäncke L. Training-induced neural plasticity in golf novices. J Neurosci. 2011;31(35):1244412448. PubMed ID: 21880905 doi:10.1523/JNEUROSCI.1996-11.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature. 2004;427(6972):311312. PubMed ID: 14737157 doi:10.1038/427311a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Davies S. Annual report of the Chief Medical Officer, volume one, 2011, on the state of the public’s health. London, UK: Department of Health; 2012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 328 328 228
Full Text Views 624 624 5
PDF Downloads 191 191 4