Leisure Sedentary Behavior Levels and Meeting Program Goals in a Community Lifestyle Intervention for Diabetes Prevention

in Journal of Physical Activity and Health

Click name to view affiliation

Bonny Rockette-Wagner
Search for other papers by Bonny Rockette-Wagner in
Current site
Google Scholar
PubMed
Close
,
Rachel G. Miller
Search for other papers by Rachel G. Miller in
Current site
Google Scholar
PubMed
Close
,
Yvonne L. Eaglehouse
Search for other papers by Yvonne L. Eaglehouse in
Current site
Google Scholar
PubMed
Close
,
Vincent C. Arena
Search for other papers by Vincent C. Arena in
Current site
Google Scholar
PubMed
Close
,
M. Kaye Kramer
Search for other papers by M. Kaye Kramer in
Current site
Google Scholar
PubMed
Close
, and
Andrea M. Kriska
Search for other papers by Andrea M. Kriska in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: The importance of leisure sedentary behavior (LSB) change in diabetes prevention efforts is not well known. This study examines the relationships between changes in self-reported LSB and the primary intervention goals (weight and moderate-intensity to vigorous-intensity physical activity [MVPA]) during a community-based translation of the Diabetes Prevention Program (the Group Lifestyle Balance Program). Methods: A total of 322 adults at risk for type 2 diabetes were recruited from 3 community centers, a worksite, and military site. Community and worksite participants were randomized to immediate or delayed-delivery (control) intervention. All military site participants (n = 99) received immediate intervention. Logistic and linear generalized estimating equations were used to determine associations between LSB changes and weight-related outcomes and MVPA. Results: Results were obtained for 259 (80.4%) participants. The LSB decreased after 6 and 12 months (mean [95% confidence interval]: −25.7 [−38.6 to −12.8] and −16.1 [−28.2 to −3.9] min/d; both P < .05). Each 20-minute reduction in LSB was associated with a 5% increase in odds of meeting the weight-loss goal (6 mo: odds ratio = 1.05 [1.002 to 1.102]; P = .042; adjusted model including MVPA), but LSB was not related to changes in reported MVPA minutes or MVPA goal achievement. Conclusion: Within the context of existing lifestyle intervention programs, reducing sedentary behavior has the potential to contribute to weight loss separately from reported MVPA improvement.

Rockette-Wagner, Miller, Kramer, and Kriska are with the Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA. Eaglehouse is with the Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. Arena is with the Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA.

Rockette-Wagner (bjr26@pitt.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35(6):725740. PubMed ID: 21164543 doi:10.1139/H10-079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rockette-Wagner B, Edelstein S, Venditti EM, et al. The impact of lifestyle intervention on sedentary time in individuals at high risk of diabetes. Diabetologia. 2015;58(6):11981202. doi:10.1007/s00125-015-3565-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN. Sedentary behavior, exercise, and cardiovascular health. Circ Res. 2019;124(5):799815. PubMed ID: 30817262 doi:10.1161/CIRCRESAHA.118.312669

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Biswas A, Oh PI, Faulkner GE, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123132. PubMed ID: 25599350 doi:10.7326/M14-1651

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bellettiere J, Healy GN, LaMonte MJ, et al. Sedentary behavior and prevalent diabetes in 6,166 older women: the objective physical activity and cardiovascular health study. J Gerontol A Biol Sci Med Sci. 2019;74(3):387395. PubMed ID: 29726906 doi:10.1093/gerona/gly101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Healy GN, Matthews CE, Dunstan DW, Winkler EA, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32(5):590597.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Dunstan DW, Salmon J, Healy GN, et al. Association of television viewing with fasting and 2-h postchallenge plasma glucose levels in adults without diagnosed diabetes. Diabetes Care. 2007;30(3):516522. PubMed ID: 17327314 doi:10.2337/dc06-1996

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Healy GN, Dunstan DW, Salmon J, Shaw JE, Zimmet PZ, Owen N. Television time and continuous metabolic risk in physically active adults. Med Sci Sports Exerc. 2008;40(4):639645. PubMed ID: 18317383 doi:10.1249/MSS.0b013e3181607421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Campbell SDI, Brosnan BJ, Chu AKY, et al. Sedentary behavior and body weight and composition in adults: a systematic review and meta-analysis of prospective studies. Sports Med. 2018;48(3):585595. PubMed ID: 29189928 doi:10.1007/s40279-017-0828-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105113. PubMed ID: 20577058 doi:10.1097/JES.0b013e3181e373a2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Golubic R, Wijndaele K, Sharp SJ, et al. Physical activity, sedentary time and gain in overall and central body fat: 7-year follow-up of the ProActive trial cohort. Int J Obes. 2015;39(1):142148. doi:10.1038/ijo.2014.66

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Barone Gibbs B, Pettee Gabriel K, Carnethon MR, et al. Sedentary time, physical activity, and adiposity: cross-sectional and longitudinal associations in CARDIA. Am J Prev Med. 2017;53(6):764771. doi:10.1016/j.amepre.2017.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: a position statement of the american diabetes association. Diabetes Care. 2016;39(11):20652079. PubMed ID: 27926890 doi:10.2337/dc16-1728

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Centers for Medicare and Medicaid Services. Medicare Diabetes Prevention Program (MDPP) Expanded Model. 2017. Accessed September 30, 2017. https://innovation.cms.gov/initiatives/medicare-diabetes-prevention-program/

    • Search Google Scholar
    • Export Citation
  • 15.

    Owen N, Sugiyama T, Eakin EE, Gardiner PA, Tremblay MS, Sallis JF. Adults’ sedentary behavior determinants and interventions. Am J Prev Med. 2011;41(2):189196. PubMed ID: 21767727 doi:10.1016/j.amepre.2011.05.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Whittemore R. A systematic review of the translational research on the diabetes prevention program. Transl Behav Med. 2011;1(3):480491. PubMed ID: 24073067 doi:10.1007/s13142-011-0062-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Eaglehouse YL, Kramer MK, Rockette-Wagner B, Arena VC, Kriska AM. Evaluation of physical activity reporting in community diabetes prevention program lifestyle intervention efforts: a systematic review. Prev Med. 2015;77:191199. PubMed ID: 26051204 doi:10.1016/j.ypmed.2015.05.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kramer MK, Miller RG, Siminerio LM. Evaluation of a community diabetes prevention program delivered by diabetes educators in the United States: one-year follow up. Diabetes Res Clin Pract. 2014;106(3):e49e52. PubMed ID: 25467620 doi:10.1016/j.diabres.2014.10.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Eaglehouse YL, Rockette-Wagner B, Kramer MK, et al. physical activity levels in a community lifestyle intervention: a randomized trial. Transl J Am Coll Sports Med. 2016;1(5):4551. PubMed ID: 27551690

    • Search Google Scholar
    • Export Citation
  • 20.

    Centers for Medicare and Medicaid Services. Proposed policies for the medicare diabetes prevention program expanded model in the calendar year 2018 physician fee schedule proposed rule. 2017. Accessed September 30, 2017. https://www.cms.gov/Newsroom/MediaReleaseDatabase/Fact-sheets/2017-Fact-Sheet-items/2017-07-13-3.html

    • Search Google Scholar
    • Export Citation
  • 21.

    Jackson L. Translating the diabetes prevention program into practice: a review of community interventions. Diabetes Educ. 2009;35(2):309320. PubMed ID: 19321809 doi:10.1177/0145721708330153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Patterson F, Lozano A, Huang L, Perkett M, Beeson J, Hanlon A. Towards a demographic risk profile for sedentary behaviours in middle-aged British adults: a cross-sectional population study. BMJ Open. 2018;8(7):e019639. PubMed ID: 29982196 doi:10.1136/bmjopen-2017-019639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Yang L, Cao C, Kantor ED, et al. Trends in sedentary behavior among the US Population, 2001–2016. JAMA. 2019;321(16):15871597. PubMed ID: 31012934 doi:10.1001/jama.2019.3636

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kramer MK, Molenaar DM, Arena VC, et al. Improving employee health: evaluation of a worksite lifestyle change program to decrease risk factors for diabetes and cardiovascular disease. J Occup Environ Med. 2015;57(3):284291. PubMed ID: 25742535 doi:10.1097/JOM.0000000000000350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kramer MK, Vanderwood KK, Arena VC, et al. Evaluation of a diabetes prevention program lifestyle intervention in older adults: a randomized controlled study in three senior/community centers of varying socioeconomic status. Diabetes Educ. 2018;44(2):118129. PubMed ID: 29514568 doi:10.1177/0145721718759982

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care. 2015;38(suppl 1):S8S16.

  • 27.

    Grundy SM, Brewer HB Jr, Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433438.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kramer MK, Kriska AM, Venditti EM, et al. Translating the diabetes prevention program: a comprehensive model for prevention training and program delivery. Am J Prev Med. 2009;37(6):505511. PubMed ID: 19944916 doi:10.1016/j.amepre.2009.07.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Eaglehouse YL, Schafer GL, Arena VC, Kramer MK, Miller RG, Kriska AM. Impact of a community-based lifestyle intervention program on health-related quality of life. Qual Life Res. 2016;25(8):19031912. PubMed ID: 26896960 doi:10.1007/s11136-016-1240-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pettee Gabriel K, McClain JJ, Schmid KK, Storti KL, Ainsworth BE. Reliability and convergent validity of the past-week modifiable activity questionnaire. Public Health Nutr. 2011;14(3):435442. doi:10.1017/S1368980010002612

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Momenan AA, Delshad M, Sarbazi N, Rezaei Ghaleh N, Ghanbarian A, Azizi F. Reliability and validity of the modifiable activity questionnaire (MAQ) in an Iranian urban adult population. Arch Iran Med. 2012;15(5):279282. PubMed ID: 22519376

    • Search Google Scholar
    • Export Citation
  • 32.

    Jacobi D, Charles MA, Tafflet M, Lommez A, Borys JM, Oppert JM. Relationships of self-reported physical activity domains with accelerometry recordings in French adults. Eur J Epidemiol. 2009;24(4):171179. PubMed ID: 19283494 doi:10.1007/s10654-009-9329-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kriska AM, Edelstein SL, Hamman RF, et al. Physical activity in individuals at risk for diabetes: diabetes prevention program. Med Sci Sports Exerc. 2006;38(5):826832. PubMed ID: 16672833 doi:10.1249/01.mss.0000218138.91812.f9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Kriska AM. Modifiable activity questionnaire. Med Sci Sports Exerc. 1997;29:S73S78.

  • 35.

    Pelclova J, Stefelova N, Hodonska J, Dygryn J, Gaba A, Zajac-Gawlak I. Reallocating time from sedentary behavior to light and moderate-to-vigorous physical activity: what has a stronger association with adiposity in older adult women? Int J Environ Res Public Health. 2018;15(7):1444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Van Der Berg J, Van Der Velde J, Waard DE, et al. Replacement effects of sedentary time on metabolic outcomes: the maastricht study. Med Sci Sports Exerc. 2017;49(7):13511358. doi:10.1249/MSS.0000000000001248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Gennuso KP, Gangnon RE, Thraen-Borowski KM, Colbert LH. Dose-response relationships between sedentary behaviour and the metabolic syndrome and its components. Diabetologia. 2015;58(3):485492. PubMed ID: 25476524 doi:10.1007/s00125-014-3453-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    van Uffelen JG, Wong J, Chau JY, et al. Occupational sitting and health risks: a systematic review. Am J Prev Med. 2010;39(4):379388. doi:10.1016/j.amepre.2010.05.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Ostendorf DM, Lyden K, Pan Z, et al. Objectively measured physical activity and sedentary behavior in successful weight loss maintainers. Obesity. 2018;26(1):5360. doi:10.1002/oby.22052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Taylor WC, Kimbro RT, Evans-Hudnall G, Haughton McNeill L, Barnes AS. Sedentary behavior, body mass index, and weight loss maintenance among African American women. Ethn Dis. 2015;25(1):3845. PubMed ID: 25812250

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Cleland VJ, Patterson K, Breslin M, Schmidt MD, Dwyer T, Venn AJ. Longitudinal associations between TV viewing and BMI not explained by the 'mindless eating’ or 'physical activity displacement’ hypotheses among adults. BMC Public Health. 2018;18(1):797. PubMed ID: 29940922 doi:10.1186/s12889-018-5674-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kerrigan SG, Call C, Schaumberg K, Forman E, Butryn ML. Associations between change in sedentary behavior and outcome in standard behavioral weight loss treatment. Transl Behav Med. 2018;8(2):299304. PubMed ID: 29425373 doi:10.1093/tbm/ibx038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Raynor HA, Steeves EA, Bassett DR Jr, Thompson DL, Gorin AA, Bond DS. Reducing TV watching during adult obesity treatment: two pilot randomized controlled trials. Behav Ther. 2013;44(4):674685. PubMed ID: 24094792 doi:10.1016/j.beth.2013.04.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Kozey-Keadle S, Staudenmayer J, Libertine A, et al. Changes in sedentary time and physical activity in response to an exercise training and/or lifestyle intervention. J Phys Act Health. 2014;11(7):13241333. PubMed ID: 24184493 doi:10.1123/jpah.2012-0340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Lee RE, King AC. Discretionary time among older adults: how do physical activity promotion interventions affect sedentary and active behaviors? Ann Behav Med. 2003;25(2):112119. PubMed ID: 12704013 doi:10.1207/S15324796ABM2502_07

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Haskell WL. Physical activity by self-report: a brief history and future issues. J Phys Act Health. 2012;9(suppl 1):S5S10. PubMed ID: 22287448 doi:10.1123/jpah.9.s1.s5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Reid N, Daly RM, Winkler EA, et al. Associations of monitor-assessed activity with performance-based physical function. PLoS One. 2016;11(4):e0153398. PubMed ID: 27073888 doi:10.1371/journal.pone.0153398

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Tudor-Locke C, Craig CL, Brown WJ, et al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8(1):79. PubMed ID: 21798015 doi:10.1186/1479-5868-8-79

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Oliveira JS, Sherrington C, Paul SS, et al. A combined physical activity and fall prevention intervention improved mobility-related goal attainment but not physical activity in older adults: a randomised trial. J Physiother. 2019;65(1):1622. PubMed ID: 30581138 doi:10.1016/j.jphys.2018.11.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    SO J, Sherrington C, RYZ E, Franco MR, Tiedemann A. Effect of interventions using physical activity trackers on physical activity in people aged 60 years and over: a systematic review and meta-analysis. Br J Sports Med. 2020. 54:11881194.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Healy GN, Winkler EA, Owen N, Anuradha S, Dunstan DW. Replacing sitting time with standing or stepping: associations with cardio-metabolic risk biomarkers. Eur Heart J. 2015;36(39):26432649. PubMed ID: 26228867 doi:10.1093/eurheartj/ehv308

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Fuzeki E, Engeroff T, Banzer W. Health benefits of light-intensity physical activity: a systematic review of accelerometer data of the national health and nutrition examination survey (NHANES). Sports Med. 2017;47(9):17691793. PubMed ID: 28393328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3417 1190 114
Full Text Views 43 11 1
PDF Downloads 79 18 2