Two Months of Using Global Recommendations for Physical Activity Had No Impact on Cognitive or Motor Functions in Overweight and Obese Middle-Aged Women

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: The effect of globally recommended levels of physical activity on cognition and motor behavior is not completely understood. Therefore, the main aim of this study was to assess the effect of 300 minutes per week of moderate-intensity aerobic exercise on cognitive and motor performance among overweight and obese working-age women. Methods: Overweight and obese participants aged 38–56 years were randomized to either a control or an experimental group performing aerobic exercise at 50% to 60% of the peak oxygen consumption for a 2-month period. Changes in aerobic fitness, cardiac autonomic function, brain-derived neurotropic factor levels, and cognitive and motor performance were assessed. Results: Although aerobic exercise reduced body weight (P < .05) and improved peak oxygen consumption (P < .05), the brain-derived neurotropic factor levels and cognitive and motor performance remained unchanged. Heart rate and blood pressure decreased (P < .05), whereas heart rate variability indices were not affected. No significant correlations between changes in heart rate variability indices and cognition were observed. Conclusions: Two months of moderate-intensity aerobic exercise decreased sympathetic activity and improved cardiovascular fitness but had no impact on cognition or motor control among these middle-aged, overweight, and obese women.

The authors are with the Institute of Sports Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.

Zlibinaite (laura.zlibinaite@lsu.lt) is corresponding author.

Supplementary Materials

    • Supplementary Figure S1 (PDF 410 KB)
  • 1.

    World Health Organization. Obesity and overweight: key facts. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight/. Published February 2018. Accessed November 11, 2019.

    • Search Google Scholar
    • Export Citation
  • 2.

    Wang C, Chan JS, Ren L, Yan JH. Obesity reduces cognitive and motor functions across the lifespan. Neural Plast. 2016;2016:2473081. PubMed ID: 26881095

  • 3.

    Wei C, Yukuo W, Hebei Z. Aerobic exercise improves insulin sensitivity and lipid metabolism are associated with reduced BMI in obese adolescents. Heart. 2011:97(suppl 3), A105A106. doi:10.1136/heartjnl-2011-300867.312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Said MA, Abdelmoneem M, Almaqhawi A, Hamid Kotob AA, Alibrahim MC, Bougmiza I. Multidisciplinary approach to obesity: aerobic or resistance physical exercise? J Exerc Sci Fitness. 2018;16(3):118123. doi:10.1016/j.jesf.2018.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Willis LH, Slentz CA, Bateman LA, et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol. 2012;113(12):18311837. doi:10.1152/japplphysiol.01370.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Swift DL, Johannsen NM, Lavie CJ, Earnest CP, Church TS. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis. 2014;56(4):441447. PubMed ID: 24438736 doi:10.1016/j.pcad.2013.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    World Health Organization. Global strategy on diet, physical activity and health. Physical activity and adults. https://www.who.int/dietphysicalactivity/factsheet_adults/en/. Published June 2015. Accessed December 17, 2019.

    • Search Google Scholar
    • Export Citation
  • 8.

    Mang CS, Campbell KL, Ross CJ, Boyd LA. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Phys Ther. 2013;93(12):17071716. PubMed ID: 23907078 doi:10.2522/ptj.20130053

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mandolesi L, Polverino A, Montuori S, et al. Effects of physical exercise on cognitive functioning and wellbeing: biological and psychological benefits. Front Psychol. 2018;9:509. PubMed ID: 29755380 doi:10.3389/fpsyg.2018.00509

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Stern Y, MacKay-Brandt A, Lee S, et al. Effect of aerobic exercise on cognition in younger adults: a randomized clinical trial. Neurology. 2019;92(9):e905e916. PubMed ID: 30700591

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bakken RC, Carey JR, Di Fabio RP, Erlandson TJ, Hake JL, Intihar TW. Effect of aerobic exercise on tracking performance in elderly people: a pilot study. Phys Ther. 2001;81(12):18701879. PubMed ID: 11736621 doi:10.1093/ptj/81.12.1870

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Masley S, Roetzheim R, Gualtieri T. Aerobic exercise enhances cognitive flexibility. J Clin Psychol Med Settings. 2009;16(2):186193. PubMed ID: 19330430 doi:10.1007/s10880-009-9159-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Stroth S, Hille K, Spitzer M, Reinhardt R. Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychol Rehabil. 2009;19(2):223243. PubMed ID: 18609015 doi:10.1080/09602010802091183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hopkins ME, Davis FC, Vantieghem MR, Whalen PJ, Bucci DJ. Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience. 2012;215:5968. PubMed ID: 22554780 doi:10.1016/j.neuroscience.2012.04.056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gomes-Osman J, Cabral DF, Hinchman C, Jannati A, Morris TP, Pascual-Leone A. The effects of exercise on cognitive function and brain plasticity – a feasibility trial. Restor Neurol Neurosci. 2017;35(5):547556.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Davis CL, Tomporowski PD, Boyle CA, et al. Effects of aerobic exercise on overweight children’s cognitive functioning: a randomized controlled trial. Res Q Exerc Sport. 2007;78(5):510519. PubMed ID: 18274222

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Davis CL, Tomporowski PD, McDowell JE, et al. Exercise improves executive function and achievement and alters brain activation in overweight children: a randomized, controlled trial. Health Psychol. 2011;30(1):9198. PubMed ID: 21299297 doi:10.1037/a0021766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Chen SR, Tseng CL, Kuo SY, Chang YK. Effects of a physical activity intervention on autonomic and executive functions in obese young adolescents: a randomized controlled trial. Health Psychol. 2016;35(10):11201125. PubMed ID: 27454114 doi:10.1037/hea0000390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mora-Gonzalez J, Esteban-Cornejo I, Cadenas-Sanchez C, et al. Fitness, physical activity, working memory, and neuroelectric activity in children with overweight/obesity. Scand J Med Sci Sports. 2019;29(9):13521363. PubMed ID: 31058358

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mora-Gonzalez J, Esteban-Cornejo I, Cadenas-Sanchez C, et al. Physical fitness, physical activity, and the executive function in children with overweight and obesity. J Pediatr. 2019;208:5056.e1. PubMed ID: 30902422 doi:10.1016/j.jpeds.2018.12.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stillman CM, Weinstein AM, Marsland AL, Gianaros PJ, Erickson KI. Body-brain connections: the effects of obesity and behavioral interventions on neurocognitive aging. Front Aging Neurosci. 2017;9:115. PubMed ID: 28507516 doi:10.3389/fnagi.2017.00115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Marks BL, Katz LM, Styner M, Smith JK. Aerobic fitness and obesity: relationship to cerebral white matter integrity in the brain of active and sedentary older adults. Br J Sports Med. 2011;45(15):12081215. PubMed ID: 20558529 doi:10.1136/bjsm.2009.068114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014;220:223250. PubMed ID: 24668475

  • 24.

    Noble EE, Billington CJ, Kotz CM, Wang C. The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1053R1069. PubMed ID: 21346243 doi:10.1152/ajpregu.00776.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Moon HY, Becke A, Berron D, et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 2016;24(2):332340. PubMed ID: 27345423 doi:10.1016/j.cmet.2016.05.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Valenzuela PL, Castillo-García A, Morales JS, et al. Exercise benefits on Alzheimer’s disease: state-of-the-science. Ageing Res Rev. 2020;62:101108. PubMed ID: 32561386 doi:10.1016/j.arr.2020.101108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):30173022. PubMed ID: 21282661 doi:10.1073/pnas.1015950108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Voss MW, Prakash RS, Erickson KI, et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci. 2010;2:32. PubMed ID: 20890449

    • Search Google Scholar
    • Export Citation
  • 29.

    Griffin ÉW, Mullally S, Foley C, Warmington SA, O’Mara SM, Kelly AM. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 2011;104(5):934941. PubMed ID: 21722657 doi:10.1016/j.physbeh.2011.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Čekanauskaitė A, Skurvydas A, Žlibinaitė L, Mickevičienė D, Kilikevičienė S, Solianik R. A 10-week yoga practice has no effect on cognition, but improves balance and motor learning by attenuating brain-derived neurotrophic factor levels in older adults. Exp Gerontol. 2020;138:110998. PubMed ID: 32544572 doi:10.1016/j.exger.2020.110998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Máderová D, Krumpolec P, Slobodová L, et al. Acute and regular exercise distinctly modulate serum, plasma and skeletal muscle BDNF in the elderly. Neuropeptides. 2019;78:101961. PubMed ID: 31506171 doi:10.1016/j.npep.2019.101961

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gourgouvelis J, Yielder P, Clarke ST, Behbahani H, Murphy B. You can’t fix what isn’t broken: eight weeks of exercise do not substantially change cognitive function and biochemical markers in young and healthy adults. PeerJ. 2018;6:e4675. PubMed ID: 29686948 doi:10.7717/peerj.4675

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Clark JE. The impact of duration on effectiveness of exercise, the implication for periodization of training and goal setting for individuals who are overfat, a meta-analysis. Biol Sport. 2016;33(4):309333. PubMed ID: 28090136 doi:10.5604/20831862.1212974

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Ortiz JG, da Silva JF, Carminatti LJ, Guglielmo LGA, Diefenthaeler F. Effect of 8 weeks soccer training on health and physical performance in untrained women. J Sports Sci Med. 2018;17(1):1723. PubMed ID: 29535574

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Inoue K, Fujie S, Hasegawa N, et al. Aerobic exercise training-induced irisin secretion is associated with the reduction of arterial stiffness via nitric oxide production in adults with obesity. Appl Physiol Nutr Metab. 2020;45(7):715722. PubMed ID: 31860334 doi:10.1139/apnm-2019-0602

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cho SY, Roh HT. Effects of aerobic exercise training on peripheral brain-derived neurotrophic factor and eotaxin-1 levels in obese young men. J Phys Ther Sci. 2016;28(4):13551358. PubMed ID: 27190482 doi:10.1589/jpts.28.1355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Roh HT, So WY. The effects of aerobic exercise training on oxidant-antioxidant balance, neurotrophic factor levels, and blood-brain barrier function in obese and non-obese men. J Sport Health Sci. 2017;6(4):447453. PubMed ID: 30356625 doi:10.1016/j.jshs.2016.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Thayer JF, Hansen AL, Saus-Rose E, Johnsen BH. Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann Behav Med. 2009;37(2):141153. PubMed ID: 19424767 doi:10.1007/s12160-009-9101-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Ernst G. Heart-rate variability-more than heart beats? Front Public Health. 2017;5:240. PubMed ID: 28955705 doi:10.3389/fpubh.2017.00240

  • 40.

    Karason K, Mølgaard H, Wikstrand J, Sjöström L. Heart rate variability in obesity and the effect of weight loss. Am J Cardiol. 1999;83(8):12421247. PubMed ID: 10215292 doi:10.1016/S0002-9149(99)00066-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Yadav RL, Yadav PK, Yadav LK, Agrawal K, Sah SK, Islam MN. Association between obesity and heart rate variability indices: an intuition toward cardiac autonomic alteration—a risk of CVD. Diabetes Metab Syndr Obes. 2017;10:5764. PubMed ID: 28255249 doi:10.2147/DMSO.S123935

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Amano M, Kanda T, Ue H, Moritani T. Exercise training and autonomic nervous system activity in obese individuals. Med Sci Sports Exerc. 2001;33(8):12871291. PubMed ID: 11474328 doi:10.1097/00005768-200108000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Goit RK, Pant BN, Shrewastwa MK. Moderate intensity exercise improves heart rate variability in obese adults with type 2 diabetes. Indian Heart J. 2018;70(4):486491. PubMed ID: 30170641 doi:10.1016/j.ihj.2017.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Baynard T, Goulopoulou S, Sosnoff RF, Fernhall B, Kanaley JA. Cardiovagal modulation and efficacy of aerobic exercise training in obese individuals. Med Sci Sports Exerc. 2014;46(2):369375. PubMed ID: 23899888 doi:10.1249/MSS.0b013e3182a66411

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Kiviniemi AM, Perkiömäki N, Auvinen J, et al. Fitness, fatness, physical activity, and autonomic function in midlife. Med Sci Sports Exerc. 2017;49(12):24592468. PubMed ID: 29135784 doi:10.1249/MSS.0000000000001387

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. PubMed ID: 29034226 doi:10.3389/fpubh.2017.00258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Diamond A. Executive functions. Annu Rev Psychol. 2013;64(1):135168. PubMed ID: 23020641 doi:10.1146/annurev-psych-113011-143750

  • 48.

    Türk Y, Theel W, Kasteleyn MJ, et al. High intensity training in obesity: a meta-analysis. Obes Sci Pract. 2017;3(3):258271. PubMed ID: 29071102 doi:10.1002/osp4.109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Kanter R, Caballero B. Global gender disparities in obesity: a review. Adv Nutr. 2012;3(4):491498. PubMed ID: 22797984 doi:10.3945/an.112.002063

  • 50.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):9298. PubMed ID: 5523831

  • 51.

    Mackinnon LT, Ritchie CB, Hooper SL, Abernethy PJ. Exercise Management: Concepts and Professional Practice. Champaign, IL: Human Kinetics; 2003.

    • Search Google Scholar
    • Export Citation
  • 52.

    Cernych M, Baranauskiene N, Eimantas N, Kamandulis S, Daniuseviciute L, Brazaitis M. Physiological and psychological responses during exercise and recovery in a cold environment is gender-related rather than fabric-related. Front Psychol. 2017;8:1344. PubMed ID: 28824518 doi:10.3389/fpsyg.2017.01344

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Skurvydas A, Verbickas V, Eimantas N, et al. Psychological and physiological biomarkers of neuromuscular fatigue after two bouts of sprint interval exercise. Front Psychol. 2017;8:2282. PubMed ID: 29312105 doi:10.3389/fpsyg.2017.02282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Howley ET, Bassett DR Jr, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):12921301. PubMed ID: 8531628 doi:10.1249/00005768-199509000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Solianik R, Sujeta A, Terentjevienė A, Skurvydas A. Effect of 48 h fasting on autonomic function, brain activity, cognition, and mood in amateur weight lifters. Biomed Res Int. 2016;2016:1. PubMed ID: 28025637 doi:10.1155/2016/1503956

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Solianik R, Sujeta A. Two-day fasting evokes stress, but does not affect mood, brain activity, cognitive, psychomotor, and motor performance in overweight women. Behav Brain Res. 2018;338:166172. PubMed ID: 29097329 doi:10.1016/j.bbr.2017.10.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Solianik R, Sujeta A, Čekanauskaitė A. Effects of 2-day calorie restriction on cardiovascular autonomic response, mood, and cognitive and motor functions in obese young adult women. Exp Brain Res. 2018;236(8):22992308. PubMed ID: 29860630 doi:10.1007/s00221-018-5305-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Brydges CR. Effect size guidelines, sample size calculations, and statistical power in gerontology. Innov Aging. 2019;3(4):igz036. PubMed ID: 31528719 doi:10.1093/geroni/igz036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Whitehurst M. Reaction time unchanged in older women following aerobic training. Percept Mot Skills. 1991;72(1):251256. PubMed ID: 2038520 doi:10.2466/pms.1991.72.1.251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Pantzar A, Jonasson LS, Ekblom Ö, Boraxbekk CJ, Ekblom MM. Relationships between aerobic fitness levels and cognitive performance in swedish office workers. Front Psychol. 2018;9:2612. PubMed ID: 30619011 doi:10.3389/fpsyg.2018.02612

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Madden DJ, Blumenthal JA, Allen PA, Emery CF. Improving aerobic capacity in healthy older adults does not necessarily lead to improved cognitive performance. Psychol Aging. 1989;4(3):307320. PubMed ID: 2803624 doi:10.1037/0882-7974.4.3.307

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Dishman RK, Berthoud HR, Booth FW, et al. Neurobiology of exercise. Obesity. 2006;14(3):345356. doi:10.1038/oby.2006.46

  • 63.

    Goldfield GS, Kenny GP, Prud’homme D, et al. Effects of aerobic training, resistance training, or both on brain-derived neurotrophic factor in adolescents with obesity: the hearty randomized controlled trial. Physiol Behav. 2018;191:138145. PubMed ID: 29679660 doi:10.1016/j.physbeh.2018.04.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Lemos JR Jr, Alves CR, de Souza SB, et al. Peripheral vascular reactivity and serum BDNF responses to aerobic training are impaired by the BDNF Val66Met polymorphism. Physiol Genomics. 2016;48(2):116123. PubMed ID: 26603150 doi:10.1152/physiolgenomics.00086.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Albinet CT, Abou-Dest A, André N, Audiffren M. Executive functions improvement following a 5-month aquaerobics program in older adults: role of cardiac vagal control in inhibition performance. Biol Psychol. 2016;115:6977. PubMed ID: 26812613 doi:10.1016/j.biopsycho.2016.01.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Figueroa A, Baynard T, Fernhall B, Carhart R, Kanaley JA. Endurance training improves post-exercise cardiac autonomic modulation in obese women with and without type 2 diabetes. Eur J Appl Physiol. 2007;100(4):437444. PubMed ID: 17406886 doi:10.1007/s00421-007-0446-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Wan R, Weigand LA, Bateman R, Griffioen K, Mendelowitz D, Mattson MP. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability. J Neurochem. 2014;129(4):573580. PubMed ID: 24475741 doi:10.1111/jnc.12656

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab. 2014;25(2):8998. PubMed ID: 24361004 doi:10.1016/j.tem.2013.10.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Lauer MS. Autonomic function and prognosis. Cleve Clin J Med. 2009;76(4 suppl 2):S18S22. doi:10.3949/ccjm.76.s2.04

  • 70.

    Joyner MJ, Charkoudian N, Wallin BG. Sympathetic nervous system and blood pressure in humans: individualized patterns of regulation and their implications. Hypertension. 2010;56(1):1016. PubMed ID: 20497993 doi:10.1161/HYPERTENSIONAHA.109.140186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, Schwartz PJ. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354381. doi:10.1093/oxfordjournals.eurheartj.a014868

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Farah BQ, Andrade-Lima A, Germano-Soares AH, et al. Physical activity and heart rate variability in adolescents with abdominal obesity. Pediatr Cardiol. 2018;39(3):466472. PubMed ID: 29164276 doi:10.1007/s00246-017-1775-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Kong SH, Park YJ, Lee JY, Cho NH, Moon MK. Insulin resistance is associated with cognitive decline among older Koreans with normal baseline cognitive function: a prospective community-based cohort study. Sci Rep. 2018;8(1):650. PubMed ID: 29330465 doi:10.1038/s41598-017-18998-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Goda A, Ohgi S, Kinpara K, Shigemori K, Fukuda K, Schneider EB. Changes in serum BDNF levels associated with moderate-intensity exercise in healthy young Japanese men. Springerplus. 2013;2(1):678. PubMed ID: 24386624 doi:10.1186/2193-1801-2-678

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Walsh JJ, Bentley RF, Gurd BJ, Tschakovsky ME. Short-duration maximal and long-duration submaximal effort forearm exercise achieve elevations in serum brain-derived neurotrophic factor. Front Physiol. 2017;8:746. PubMed ID: 29056915 doi:10.3389/fphys.2017.00746

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 285 285 168
Full Text Views 9 9 4
PDF Downloads 7 7 3