Regular Sports Participation as a Potential Predictor of Better Clinical Outcome in Adult Patients With COVID-19: A Large Cross-Sectional Study

in Journal of Physical Activity and Health

Click name to view affiliation

Farzin Halabchi
Search for other papers by Farzin Halabchi in
Current site
Google Scholar
PubMed
Close
,
Reza Mazaheri
Search for other papers by Reza Mazaheri in
Current site
Google Scholar
PubMed
Close
,
Khashayar Sabeti
Search for other papers by Khashayar Sabeti in
Current site
Google Scholar
PubMed
Close
,
Masoud Yunesian
Search for other papers by Masoud Yunesian in
Current site
Google Scholar
PubMed
Close
,
Zahra Alizadeh
Search for other papers by Zahra Alizadeh in
Current site
Google Scholar
PubMed
Close
,
Zahra Ahmadinejad
Search for other papers by Zahra Ahmadinejad in
Current site
Google Scholar
PubMed
Close
,
Seyed Mojtaba Aghili
Search for other papers by Seyed Mojtaba Aghili in
Current site
Google Scholar
PubMed
Close
, and
Zahra Tavakol
Search for other papers by Zahra Tavakol in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To compare the severity outcomes of COVID-19 disease between patients with and without regular sports participation. Methods: In a cross-sectional study, the authors investigated all patients who visited the emergency department of Imam Khomeini hospital with signs and symptoms of COVID-19 from February 20 to April 20, 2020. Then the authors assessed all patient outcomes (outpatient vs hospitalization or death). Finally, the authors compared the outcomes between athletes with regular sports participation and others, adjusting for confounding factors of age and sex. Results: Of all 4694 adult patients, 249 individuals (137 males and 112 females with mean [SD] age of 36.45 [9.77] y) had regular participation in different sport disciplines. Overall, 30 (12%) athletes were hospitalized or died (30 and 0, respectively) compared with 957 (21.5%) nonathletes (878 and 79, respectively). Athletes with regular sports participation were 1.49 times less likely to be hospitalized (P = .044). Conclusions: Regular sports participation may positively affect the clinical outcome, regardless of confounding factors of age and sex. The probability of hospitalization in athletes with regular sports participation was 33% lower than nonathletes. However, more longitudinal studies are needed to determine the causal effects.

Halabchi, Mazaheri, Alizadeh, and Tavakol are with the Department of Sports and Exercise Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran. Sabeti is with the Tehran Sports Medicine Board, Tehran, Iran. Yunesian is with the Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran. Alizadeh and Tavakol are also with the Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran. Ahmadinejad is with the Department of Infectious Disease, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran. Aghili is with the Department of Emergency Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.

Halabchi (fhalabchi@tums.ac.ir) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Bellos A, Mulholland K, O’Brien KL, Qazi SA, Gayer M, Checchi F. The burden of acute respiratory infections in crisis-affected populations: a systematic review. Confl Health. 2010;4(1):3. PubMed ID: 20181220 doi:10.1186/1752-1505-4-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Shi T, Arnott A, Semogas I, et al. The etiological role of common respiratory viruses in acute respiratory infections in older adults: a systematic review and meta-analysis. J Infect Dis. 2020;222(suppl 7):S563S569. doi:10.1093/infdis/jiy662

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gandhi RT, Lynch JB, del Rio C. Mild or moderate COVID-19. N Engl J Med. 2020;383:17571766. doi:10.1056/NEJMcp2009249

  • 4.

    Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and mortality among black patients and white patients with Covid-19. N Engl J Med. 2020;382:25342543. PubMed ID: 32459916 doi:10.1056/NEJMsa2011686

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: a systematic literature review and meta-analysis. J Infect. 2020;81(2):e16e25. doi:10.1016/j.jinf.2020.04.021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Halabchi F, Ahmadinejad Z, Selk-Ghaffari M. COVID-19 epidemic: exercise or not to exercise; that is the question! Asian J Sports Med. 2020;11(1):e102630. doi:10.5812/asjsm.102630.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Chen P, Mao L, Nassis G, Harmer P, Ainsworth B, Li F. Coronavirus disease (COVID-19): the need to maintain regular physical activity while taking precautions. J Sport Health Sci. 2020;9:103104. PubMed ID: 32099716 doi:10.1016/j.jshs.2020.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hudson GM, Sprow K. Promoting physical activity during the COVID-19 pandemic: implications for obesity and chronic disease management. J Phys Act Health. 2020;9:13. doi:10.1123/jpah.2020-0318.

    • Search Google Scholar
    • Export Citation
  • 9.

    Barrett B, Hayney MS, Muller D, et al. Meditation or exercise for preventing acute respiratory infection (MEPARI-2): a randomized controlled trial. PLoS One. 2018;13(6):e0197778. PubMed ID: 29933369 doi:10.1371/journal.pone.0197778

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Barrett B, Hayney MS, Muller D, et al. Meditation or exercise for preventing acute respiratory infection: a randomized controlled trial. Ann Fam Med. 2012;10(4):337346. PubMed ID: 22778122 doi:10.1370/afm.1376

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nieman DC, Henson DA, Austin MD, Sha W. Upper respiratory tract infection is reduced in physically fit and active adults. Br J Sports Med. 2011;45:9879 92. PubMed ID: 21041243 doi:10.1136/bjsm.2010.077875

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Nieman DC. Does exercise alter immune function and respiratory infections? Pres Counc Phys Fit Sports Res. 2001;3:110.

  • 13.

    Nieman DC. Is infection risk linked to exercise workload? Med Sci Sports Exerc. 2000;32(7):S406S411. PubMed ID: 10910297

  • 14.

    Matthews CE, Ockene IS, Freedson PS, Rosal MC, Merriam PA, Hebert JR. Moderate to vigorous physical activity and risk of upper-respiratory tract infection. Med Sci Sports Exerc. 2002;34(8):12421248. PubMed ID: 12165677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fondell E, Lagerros YT, Sundberg CJ, et al. Physical activity, stress, and self-reported upper respiratory tract infection. Med Sci Sports Exerc. 2011;43(2):272279. PubMed ID: 20581713 doi:10.1249/MSS.0b013e3181edf108

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Choi SM, Jeong YJ, Park JS, et al. The impact of lifestyle behaviors on the acquisition of pandemic (H1N1) influenza infection: a case-control study. Yonsei Med J. 2014;55(2):422427. PubMed ID: 24532513 doi:10.3349/ymj.2014.55.2.422

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Grande AJ, Keogh J, Silva V, Scott AM. Exercise versus no exercise for the occurrence, severity, and duration of acute respiratory infections. Cochrane Database Syst Rev. 2020;4:CD010596. PubMed ID: 32246780 doi:10.1002/14651858.CD010596.pub3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ghilotti F, Pesonen A-S, Raposo SE, et al. Physical activity, sleep and risk of respiratory infections: a Swedish cohort study. PLoS One. 2018;13(1):e0190270. PubMed ID: 29300730 doi:10.1371/journal.pone.0190270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Nieman DC. Moderate exercise improves immunity and decreases illness rates. Am J Lifestyle Med. 2011;5(4):338345. doi:10.1177/1559827610392876

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Nieman DC, Nehlsen-Cannarella SL, Henson DA, et al. Immune response to exercise training and/or energy restriction in obese women. Med Sci Sports Exerc. 1998;30(5):679686. PubMed ID: 9588608 doi:10.1097/00005768-199805000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kostka T, Berthouze SE, Lacour J-R, Bonnefoy M. The symptomatology of upper respiratory tract infections and exercise in elderly people. Med Sci Sports Exerc. 2000;32(1):4651. PubMed ID: 10647528 doi:10.1097/00005768-200001000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Wynants L, Van Calster B, Bonten MM, et al. Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ. 2020;369:m1328. PubMed ID: 32265220 doi:10.1136/bmj.m1328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:10541062. PubMed ID: 32171076 doi:10.1016/S0140-6736(20)30566-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hamer M, Kivimäki M, Gale CR, Batty GD. Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a community-based cohort study of 387,109 adults in UK. Brain Behav Immun. 2020;87:184187. PubMed ID: 32454138 doi:10.1016/j.bbi.2020.05.059

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Çiloğlu F. The effect of exercise on salivary IgA levels and the incidence of upper respiratory tract infections in postmenopausal women. Kulak Burun Bogaz Ihtis Derg. 2005;15(5–6):112116. PubMed ID: 16444091

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lowder T, Padgett DA, Woods JA. Moderate exercise protects mice from death due to influenza virus. Brain Behav Immun. 2005;19(5):377380. PubMed ID: 15922557 doi:10.1016/j.bbi.2005.04.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Warren KJ, Olson MM, Thompson NJ, et al. Exercise improves host response to influenza viral infection in obese and non-obese mice through different mechanisms. PLoS One. 2015;10(6):e0129713. PubMed ID: 26110868 doi:10.1371/journal.pone.0129713

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Effects of moderate exercise and oat beta-glucan on innate immune function and susceptibility to respiratory infection. Am J Physiol Regul Integr Comp Physiol. 2004;286(2):R366R372. PubMed ID: 14551169 doi:10.1152/ajpregu.00304.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Guan W-j, Liang W-h, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. PubMed ID: 32217650 doi:10.1183/13993003.00547-2020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Parra-Bracamonte GM, Lopez-Villalobos N, Parra-Bracamonte FE. Clinical characteristics and risk factors for mortality of patients with COVID-19 in a large data set from Mexico. Ann Epidemiol. 2020;S1047-2797(20)30286-6. PubMed ID: 32798701 doi:10.1016/j.annepidem.2020.08.005

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3394 1249 149
Full Text Views 724 26 0
PDF Downloads 258 56 1