Prevalence of Internet Addiction and Its Relationship With Combinations of Physical Activity and Screen-Based Sedentary Behavior Among Adolescents in China

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $119.00

1 year online subscription

USD  $159.00

Student 2 year online subscription

USD  $227.00

2 year online subscription

USD  $302.00

Background: Given the widespread prevalence and serious nature of Internet addiction (IA), this study aimed to estimate the prevalence of IA and assess the relationships between IA and combinations of physical activity (PA) and screen-based sedentary behavior (SB) among adolescents in China. Methods: This cross-sectional study surveyed 31,954 adolescents in grades 7 to 12 in Beijing. IA, PA, screen-based SB, and other information were obtained from a self-administrated questionnaire. The chi-square test and mixed-effects logistic regression model were applied to estimate the relationship between IA and combinations of PA and screen-based SB. Results: 6.2% of the surveyed adolescents reported IA and the prevalence of low PA/high screen-based SB, high PA/high screen-based SB, low PA/low screen-based SB, and high PA/low screen-based SB were 53.7%, 19.5%, 18.8%, and 8.0%, respectively. Mixed-effects logistic regression analysis showed that adolescents with low PA/high screen-based SB were 1.99 (95% confidence interval, 1.62–2.44, P < .001) times more likely to prefer IA than those with high PA/low screen-based SB. Conclusions: The prevalence of IA among Chinese adolescents is still high. Intervention programs like maintaining sufficient PA and reducing screen-based SB might contribute to reducing their IA.

Han and Zhang contributed equally to this article. Han is with the Peking University Third Hospital, Peking University, Beijing, China. Zhang and Song are with the Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing, China. Ma is with the School of Health Humanities, Peking University, Beijing, China. Lu and Duan are with the Beijing Center for Disease Prevention and Control, Beijing, China. Lau is with the Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China; and the Laboratory of Exercise Science and Health, BNU-HKBU United International College, China.

Song (songyi@bjmu.edu.cn) is corresponding author.
  • 1.

    Kemp S. Digital 2019: global digital overview. Datareportal. 2019. https://datareportal.com/reports/digital-2019-global-digital-overview. Accessed June 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 2.

    Department of Youth Protection of the Central Committee of the Communist Young League, China Internet Network Information Center. The 2019 National Internet Research Report on Children. 2020. http://www.cac.gov.cn/2020-05/13/c_1590919071365700.htm. Accessed June 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 3.

    VandenBos GR. APA Dictionary of Psychology. Washington, DC: American Psychological Association; 2015.

  • 4.

    Kim K, Ryu E, Chon MY, et al. Internet addiction in Korean adolescents and its relation to depression and suicidal ideation: a questionnaire survey. Int J Nurs Stud. 2006;43(2):185192. PubMed ID: 16427966 doi:10.1016/j.ijnurstu.2005.02.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Średniawa A, Jarczewska D, Żabicka K, et al. Internet addiction among graduates of general secondary schools in Cracow and its correlation with body mass index and other health problems (in Polish). Pol Merkur Lekarski. 2015;39(229):3136. PubMed ID: 26277175

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cheng C, Li AY-I. Internet addiction prevalence and quality of (real) life: a meta-analysis of 31 nations across seven world regions. Cyberpsychol Behav Soc Netw. 2014;17(12):755760. PubMed ID: 25489876 doi:10.1089/cyber.2014.0317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Yang T, Yu L, Oliffe JL, Jiang S, Si Q. Regional contextual determinants of internet addiction among college students: a representative nationwide study of China. Eur J Public Health. 2017;27(6):10321037. PubMed ID: 29077834 doi:10.1093/eurpub/ckx141

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Chi X, Hong X, Chen X. Profiles and sociodemographic correlates of Internet addiction in early adolescents in southern China. Addict Behav. 2020;106:106385. PubMed ID: 32187574 doi:10.1016/j.addbeh.2020.106385

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Shek DTL, Yu L. Internet addiction in Hong Kong adolescents: profiles and psychosocial correlates. Int J Disabil Hum Dev. 2012;11(2):133142. doi:10.1100/tsw.2008.104

    • Search Google Scholar
    • Export Citation
  • 10.

    Cao R, Gao T, Ren H, et al. The relationship between bullying victimization and depression in adolescents: multiple mediating effects of internet addiction and sleep quality. Psychol Health Med. 2020:26(5);555565. doi:10.1080/13548506.2020.1770814

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Koyuncu T, Unsal A, Arslantas D. Assessment of internet addiction and loneliness in secondary and high school students. J Pak Med Assoc. 2014;64(9):9981002. PubMed ID: 25823176

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Younes F, Halawi G, Jabbour H, et al. Internet addiction and relationships with insomnia, anxiety, depression, stress and self-esteem in university students: a cross-sectional designed study. PLoS One. 2016;11(9):e0161126. PubMed ID: 27618306 doi:10.1371/journal.pone.0161126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Khan MA, Shabbir F, Rajput TA. Effect of gender and physical activity on internet addiction in medical students. Pak J Med Sci. 2017;33(1):191194. PubMed ID: 28367198 doi:10.12669/pjms.331.11222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Aşut Ö, Abuduxike G, Acar-Vaizoğlu S, Cali S. Relationships between screen time, internet addiction and other lifestyle behaviors with obesity among secondary school students in the Turkish Republic of Northern Cyprus. Turk J Pediatr. 2019;61(4):568579. PubMed ID: 31990475 doi:10.24953/turkjped.2019.04.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans. 2nd ed. Washington, DC: U.S. Department of Health and Human Services; 2018.

    • Search Google Scholar
    • Export Citation
  • 16.

    Tremblay MS, Aubert S, Barnes JD, et al. Sedentary behavior research network (SBRN)—terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75. PubMed ID: 28599680 doi:10.1186/s12966-017-0525-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Carson V, Hunter S, Kuzik N, Gray CE, Tremblay MS. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6)(suppl 3):S240S265. PubMed ID: 27306432 doi:10.1139/apnm-2015-0630

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Salama B. Prevalence and associated factors of Internet addiction among undergraduate students at Al-Beheira Governorate, Egypt. Int J Public Health. 2020;65(6):905910. PubMed ID: 32676705 doi:10.1007/s00038-020-01429-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kim DA, Nila N, Hoang LQN, et al. Associations between internet addiction and physical activity among Vietnamese youths and adolescents. Child Youth Serv Rev. 2018;93:3640. doi:10.1016/j.childyouth.2018.06.030

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Yadav P, Banwari G, Parmar C, Maniar R. Internet addiction and its correlates among high school students: a preliminary study from Ahmedabad, India. Asian J Psychiatr. 2013;6(6):500505. PubMed ID: 24309861 doi:10.1016/j.ajp.2013.06.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Ying Ying C, Awaluddin SM, Kuang Kuay L, et al. Association of internet addiction with adolescents’ lifestyle: a national school-based survey. Int J Environ Res Public Health. 2020;18(1):168. doi:10.3390/ijerph18010168

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Shek DTL, Tang VMY, Lo CY. Internet addiction in Chinese adolescents in Hong Kong: assessment, profiles, and psychosocial correlates. Sci World J. 2008;8:776787. doi:10.1100/tsw.2008.104

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Melkevik O, Torsheim T, Iannotti RJ, Wold B. Is spending time in screen-based sedentary behaviors associated with less physical activity: a cross national investigation. Int J Behav Nutr Phys Act. 2010;7(1):46. PubMed ID: 20492643 doi:10.1186/1479-5868-7-46

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    de Looze M, Elgar FJ, Currie C, Kolip P, Stevens G. Gender inequality and sex differences in physical fighting, physical activity, and injury among adolescents across 36 countries. J Adolesc Health. 2019;64(5):657663. PubMed ID: 30850313 doi:10.1016/j.jadohealth.2018.11.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Byun W, Dowda M, Pate RR. Associations between screen-based sedentary behavior and cardiovascular disease risk factors in Korean youth. J Korean Med Sci. 2012;27(4):388394. PubMed ID: 22468102 doi:10.3346/jkms.2012.27.4.388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Zhang YY, Lei YT, Song Y, Lu RR, Duan JL, Prochaska JJ. Gender differences in suicidal ideation and health-risk behaviors among high school students in Beijing, China. J Glob Health. 2019;9(1):010604. PubMed ID: 31217964 doi:10.7189/jogh.09.010604

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Grunbaum JA, Kann L, Kinchen S, et al. Youth risk behavior surveillance—United States, 2003. MMWR Surveill Summ. 2004;53(2):196. PubMed ID: 15152182

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Brener ND, Kann L, Kinchen SA, et al. Methodology of the youth risk behavior surveillance system. MMWR Recomm Rep. 2004;53(RR12):113.

  • 29.

    Xing Y, Ji C, Zhang L. Relationship of binge drinking and other health-compromising behaviors among urban adolescents in China. J Adolesc Health. 2006;39(4):495500. PubMed ID: 16982383 doi:10.1016/j.jadohealth.2006.03.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Li CQ, Zhang JS, Ma S, et al. Gender differences in self-harm and drinking behaviors among high school students in Beijing, China. BMC Public Health. 2020;20(1):1892. PubMed ID: 33298006 doi:10.1186/s12889-020-09979-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    World Health Organization. Global recommendations on physical activity for health. 2010. https://www.who.int/publications/i/item/9789241599979. Accessed May 31, 2021.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Braig S, Genuneit J, Walter V, et al. Screen time, physical activity and self-esteem in children: the ulm birth cohort study. Int J Environ Res Public Health. 2018;15(6):1275. doi:10.3390/ijerph15061275

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Tremblay MS, Carson V, Chaput JP, Gorber SC, Zehr L. Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41(6)(suppl 3):S311S327. PubMed ID: 27306437 doi:10.1139/apnm-2016-0151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Young KS. Internet addiction: the emergence of a new clinical disorder. Cyberpsychol Behav. 1998;1(3):237244. doi:10.1089/cpb.1998.1.237

  • 35.

    Li Y, Zhong BL, Liu XB, Zhang Y, Zhu JWH. Reliability and validity of the Chinese version of self-rating Youngs diagnostic questionnaire of Internet addiction: a preliminary study. Chin J Drug Depend. 2012;21(5):390394. doi:10.13936/j.cnki.cjdd1992.2012.05.018

    • Search Google Scholar
    • Export Citation
  • 36.

    Lu L, Xu D-D, Liu H-Z, et al. Internet addiction in Tibetan and Han Chinese middle school students: prevalence, demographics and quality of life. Psychiatry Res. 2018;268:131136. PubMed ID: 30025283 doi:10.1016/j.psychres.2018.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Li L, Xu DD, Chai JX, et al. Prevalence of internet addiction disorder in Chinese university students: a comprehensive meta-analysis of observational studies. J Behav Addict. 2018;7(3):610623. PubMed ID: 30010411 doi:10.1556/2006.7.2018.53

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    China Internet Network Information Center. The 2015 China youth online behavior research report. 2016. http://www.cac.gov.cn/2016-08/13/c_1121534382.htm. Accessed June 24, 2020.

    • Search Google Scholar
    • Export Citation
  • 39.

    Kim Y, Umeda M, Lochbaum M, Stegemeier S. Physical activity, screen-based sedentary behavior, and sleep duration in adolescents: youth risk behavior survey, 2011-2013. Prev Chronic Dis. 2016;13:E131. PubMed ID: 27634781 doi:10.5888/pcd13.160245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Krafft CE, Schwarz NF, Chi L, et al. An 8-month randomized controlled exercise trial alters brain activation during cognitive tasks in overweight children. Obesity. 2014;22(1):232242. doi:10.1002/oby.20518

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Krafft CE, Schaeffer DJ, Schwarz NF, et al. Improved frontoparietal white matter integrity in overweight children is associated with attendance at an after-school exercise program. Dev Neurosci. 2014;36(1):19. PubMed ID: 24457421 doi:10.1159/000356219

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hillman CH, Pontifex MB, Castelli DM, et al. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics. 2014;134(4):e1063e1071. PubMed ID: 25266425 doi:10.1542/peds.2013-3219

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Horowitz-Kraus T, Hutton JS. Brain connectivity in children is increased by the time they spend reading books and decreased by the length of exposure to screen-based media. Acta Paediatr. 2018;107(4):685693. PubMed ID: 29215151 doi:10.1111/apa.14176

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Hong SB, Kim JW, Choi EJ, et al. Reduced orbitofrontal cortical thickness in male adolescents with internet addiction. Behav Brain Funct. 2013;9(1):11. PubMed ID: 23497383 doi:10.1186/1744-9081-9-11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Zhou Y, Lin FC, Du YS, et al. Gray matter abnormalities in Internet addiction: a voxel-based morphometry study. Eur J Radiol. 2011;79(1):9295. PubMed ID: 19926237 doi:10.1016/j.ejrad.2009.10.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Yuan K, Qin W, Wang G, et al. Microstructure abnormalities in adolescents with internet addiction disorder. PLoS One. 2011;6(6):e20708. PubMed ID: 21677775 doi:10.1371/journal.pone.0020708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Cerniglia L, Zoratto F, Cimino S, Laviola G, Ammaniti M, Adriani W. Internet addiction in adolescence: neurobiological, psychosocial and clinical issues. Neurosci Biobehav Rev. 2017;76:174184. PubMed ID: 28027952 doi:10.1016/j.neubiorev.2016.12.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Park S. Associations of physical activity with sleep satisfaction, perceived stress, and problematic Internet use in Korean adolescents. BMC public health. 2014;14(1):1143. PubMed ID: 25373558 doi:10.1186/1471-2458-14-1143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Lubans D, Richards J, Hillman C, et al. Physical activity for cognitive and mental health in youth: a systematic review of mechanisms. Pediatrics. 2016;138(3):e20161642. PubMed ID: 27542849 doi:10.1542/peds.2016-1642

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Rodriguez-Ayllon M, Cadenas-Sánchez C, Estévez-López F, et al. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: a systematic review and meta-analysis. Sports Med. 2019;49(9):13831410. PubMed ID: 30993594 doi:10.1007/s40279-019-01099-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Liu M, Zhang J, Hu E, Yang H, Cheng C, Yao S. Combined patterns of physical activity and screen-related sedentary behavior among Chinese adolescents and their correlations with depression, anxiety and self-injurious behaviors. Psychol Res Behav Manag. 2019;12:10411050. PubMed ID: 31807098 doi:10.2147/PRBM.S220075

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Hrafnkelsdottir SM, Brychta RJ, Rognvaldsdottir V, et al. Less screen time and more frequent vigorous physical activity is associated with lower risk of reporting negative mental health symptoms among Icelandic adolescents. PLoS One. 2018;13(4):e0196286. PubMed ID: 29698499 doi:10.1371/journal.pone.0196286

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 356 356 95
Full Text Views 13 13 0
PDF Downloads 14 14 0