Daily Physical Education Linked to Higher Youth Aerobic Fitness Levels: A 4-Year Longitudinal Study

in Journal of Physical Activity and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $119.00

1 year online subscription

USD  $159.00

Student 2 year online subscription

USD  $227.00

2 year online subscription

USD  $302.00

Purpose: Physical education (PE) provides opportunities for youth physical activity during the school day, yet daily PE policies remain low. This study investigated whether daily PE was linked to youth aerobic capacity across a 4-year period in Greenville (South Carolina). Methods: Youth in grade levels second to eighth at 2 schools providing daily PE and 2 schools that did not provide daily PE participated in the study (N = 466). The 2 schools used as comparisons provided standard PE outlined by South Carolina, which included one 50-minute session per week (elementary) and daily PE for one semester (middle school). Aerobic fitness was measured using the FITNESSGRAM® Progressive Aerobic Cardiovascular Endurance Run test (May 2011–2015). Number of Progressive Aerobic Cardiovascular Endurance Run laps completed, age, gender, ethnicity, body composition, and school attended were included in multilevel linear regression analyses. Results: Across the sample, aerobic fitness increased with age. Throughout the study, males demonstrated growth in aerobic fitness compared with a slight decline for females (P < .001). Youth participation in daily PE was linked to increases in aerobic fitness compared with youth who did not receive daily PE (P < .001). Conclusions: Findings suggest that exposure to daily PE may contribute to increased aerobic fitness in youth.

Hughey is with the Department of Health and Human Performance, College of Charleston, Charleston, SC, USA. Reed is with the Department of Health Sciences, Furman University, Greenville, SC, USA. King is with the Youth Learning Institute, Clemson University, Pickens, SC, USA.

Hughey (hugheysm@cofc.edu) is corresponding author.
  • 1.

    Clark BR, White ML, Royer NK, et al. Obesity and aerobic fitness among urban public school students in elementary, middle, and high school. PLoS One. 2015;10(9):e0138175. PubMed ID: 26378914 doi:10.1371/journal.pone.0138175

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kohl HW, Craig CL, Lambert EV, et al. The pandemic of physical inactivity: global action for public health. Lancet Lond Engl. 2012;380(9838):294305. doi:10.1016/S0140-6736(12)60898-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    United States Department of Health and Human Services. Physical Activity Guidelines Advisory Committee Report, 2008; 2008.

  • 4.

    Bai Y, Saint-Maurice PF, Welk GJ, Russell DW, Allums-Featherston K, Candelaria N. The longitudinal impact of NFL PLAY 60 programming on youth aerobic capacity and BMI. Am J Prev Med. 2017;52(3):311323. PubMed ID: 27919454 doi:10.1016/j.amepre.2016.10.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Welk GJ, Laurson KR, Eisenmann JC, Cureton KJ. Development of youth aerobic-capacity standards using receiver operating characteristic curves. Am J Prev Med. 2011;41(4, suppl 2):S111S116. doi:10.1016/j.amepre.2011.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dencker M, Thorsson O, Karlsson MK, et al. Daily physical activity in Swedish children aged 8–11 years. Scand J Med Sci Sports. 2006;16(4):252257. PubMed ID: 16895530 doi:10.1111/j.1600-0838.2005.00486.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gahche J, Fakhouri T, Carroll DD, Burt VL, Wang C-Y, Fulton JE. Cardiorespiratory Fitness Levels Among U.S. Youth Aged 12–15 Years: United States, 1999–2004 and 2012. U.S. Department of Health and Human Services, National Center for Health Statistics; 2014;(153):1–8. PubMed ID:24871993

    • Search Google Scholar
    • Export Citation
  • 8.

    Vanhelst J, Fardy PS, Chapelot D, Czaplicki G, Ulmer Z. Physical fitness levels of adolescents in the Ile de France region: comparisons with European standards and relevance for future cardiovascular risk. Clin Physiol Funct Imaging. 2016;36(6):476481. PubMed ID: 26095754 doi:10.1111/cpf.12253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Singhvi A, Tansey M, Janz K, Zimmerman M, Tsalikian E. Aerobic fitness and glycemic variability in adolescents with type 1 diabetes. Endocr Pract. 2014;20(6):566570. PubMed ID: 24449660 doi:10.4158/EP13211.OR

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dencker M, Thorsson O, Karlsson MK, et al. Gender differences and determinants of aerobic fitness in children aged 8–11 years. Eur J Appl Physiol. 2007;99(1):1926. PubMed ID: 17024465 doi:10.1007/s00421-006-0310-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Eisenmann JC, Laurson KR, Welk GJ. Aerobic fitness percentiles for US adolescents. Am J Prev Med. 2011;41(4):S106S110. doi:10.1016/j.amepre.2011.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Boreham C, Riddoch C. The physical activity, fitness and health of children. J Sports Sci. 2001;19(12):915929. PubMed ID: 11820686 doi:10.1080/026404101317108426

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lee I-M. Dose-response relation between physical activity and fitness: even a little is good; more is better. JAMA. 2007;297(19):21372139. doi:10.1001/jama.297.19.2137

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Morris E, Meers GM, Koch LG, Britton SL, MacLean PS, Thyfault JP. Increased aerobic capacity reduces susceptibility to acute high-fat diet-induced weight gain. Obesity. 2016;24(9):19291937. doi:10.1002/oby.21564

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Walker JL, Murray TD, Eldridge J, Squires WG, Silvius P, Silvius E. The association between waist circumference and FITNESSGRAM® aerobic capacity classification in sixth-grade children. Pediatr Exerc Sci. 2015;27(4):488493. PubMed ID: 26252782 doi:10.1123/pes.2015-0009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007–2008 to 2015–2016. JAMA. 2018;319(16):17231725. PubMed ID: 29570750 doi:10.1001/jama.2018.3060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Telama R. Tracking of physical activity from childhood to adulthood: a review. Obes Facts. 2009;2(3):187195. PubMed ID: 20054224 doi:10.1159/000222244

  • 18.

    Bai Y, Saint-Maurice PF, Welk GJ, Allums-Featherston K, Candelaria N. Explaining disparities in youth aerobic fitness and body mass index: relative impact of socioeconomic and minority status. J Sch Health. 2016;86(11):787793. PubMed ID: 27714871 doi:10.1111/josh.12434

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    World Health Organization. More active people for a healthier world: global action plan on physical activity 2018–2030; 2018.

  • 21.

    Beets MW, Weaver RG, Moore JB. Understanding the real value of youth physical activity promotion. Prev Med. 2015;72:130132. PubMed ID: 25434734 doi:10.1016/j.ypmed.2014.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Story M, Nanney MS, Schwartz MB. Schools and obesity prevention: creating school environments and policies to promote healthy eating and physical activity. Milbank Q. 2009;87(1):71100. PubMed ID: 19298416 doi:10.1111/j.1468-0009.2009.00548.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Verstraete SJ, Cardon GM, De Clercq DL, De Bourdeaudhuij IM. Increasing children’s physical activity levels during recess periods in elementary schools: the effects of providing game equipment. Eur J Public Health. 2006;16(4):415419. PubMed ID: 16431866 doi:10.1093/eurpub/ckl008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Alderman BL, Benham-Deal T, Beighle A, Erwin HE, Olson RL. Physical education’s contribution to daily physical activity among middle school youth. Pediatr Exerc Sci. 2012;24(4):634648. PubMed ID: 23196768 doi:10.1123/pes.24.4.634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bornstein DB, Pate RR, Buchner DM. Development of a national physical activity plan for the United States. J Phys Act Health. 2014;11(3):463469. PubMed ID: 24714332 doi:10.1123/jpah.2013-0358

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Naiman DI, Leatherdale ST, Gotay C, Mâsse LC. School factors associated with the provision of physical education and levels of physical activity among elementary school students in Ontario. Can J Public Health. 2015;106(5):e290e296. PubMed ID: 26451990 doi:10.17269/cjph.106.4899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Fairclough S, Stratton G. Physical activity levels in middle and high school physical education: a review. Pediatr Exerc Sci. 2005;17(3):217236. doi:10.1123/pes.17.3.217

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Silva DAS, Chaput J-P, Katzmarzyk PT, et al. Physical education classes, physical activity, and sedentary behavior in children. Med Sci Sports Exerc. 2018;50(5):9951004. PubMed ID: 29252970 doi:10.1249/MSS.0000000000001524

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Erfle SE, Gamble A. Effects of daily physical education on physical fitness and weight status in middle school adolescents. J Sch Health. 2015;85(1):2735. PubMed ID: 25440450 doi:10.1111/josh.12217

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lee SM, Burgeson CR, Fulton JE, Spain CG. Physical education and physical activity: results from the School Health Policies and Programs Study 2006. J Sch Health. 2007;77(8):435463. PubMed ID: 17908102 doi:10.1111/j.1746-1561.2007.00229.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kohl HW, Cook HD. Educating the Student Body: Taking Physical Activity and Physical Education to School. Washington, DC: National Academies Press; 2013. doi:10.17226/18314

    • Search Google Scholar
    • Export Citation
  • 32.

    Santana CCA, Azevedo LB, Cattuzzo MT, Hill JO, Andrade LP, Prado WL. Physical fitness and academic performance in youth: a systematic review. Scand J Med Sci Sports. 2017;27(6):579603. PubMed ID: 27714852 doi:10.1111/sms.12773

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Rasberry CN, Lee SM, Robin L, et al. The association between school-based physical activity, including physical education, and academic performance: a systematic review of the literature. Prev Med. 2011;52:S10S20. PubMed ID: 21291905 doi:10.1016/j.ypmed.2011.01.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Fair ML, Reed JA, Hughey SM, Powers AR, King S. The association between aerobic fitness and academic achievement among elementary school youth. Transl J Am Coll Sports Med. 2017;2(9):4450.

    • Search Google Scholar
    • Export Citation
  • 35.

    Sanchez-Vaznaugh EV, Sánchez BN, Rosas LG, Baek J, Egerter S. Physical education policy compliance and children’s physical fitness. Am J Prev Med. 2012;42(5):452459. PubMed ID: 22516484 doi:10.1016/j.amepre.2012.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cawley J, Meyerhoefer C, Newhouse D. The impact of state physical education requirements on youth physical activity and overweight. Health Econ. 2007;16(12):12871301. PubMed ID: 17328052 doi:10.1002/hec.1218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kelly IR, Phillips MA, Revels M, Ujamaa D. Contribution of the school environment to physical fitness in children and youth. J Phys Act Health. 2010;7(3):333342. doi:10.1123/jpah.7.3.333

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Taber DR, Chriqui JF, Perna FM, Powell LM, Slater SJ, Chaloupka FJ. Association between state physical education (PE) requirements and PE participation, physical activity, and body mass index change. Prev Med. 2013;57(5):629633. PubMed ID: 23978523 doi:10.1016/j.ypmed.2013.08.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Hobin E, Erickson T, Comte M, et al. Examining the impact of a province-wide physical education policy on secondary students’ physical activity as a natural experiment. Int J Behav Nutr Phys Act. 2017;14(1):98. PubMed ID: 28724390 doi:10.1186/s12966-017-0550-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Reed JA, Maslow AL, Long S, Hughey M. Examining the impact of 45 minutes of daily physical education on cognitive ability, fitness performance, and body composition of African American youth. J Phys Act Health. 2013;10(2):185197. PubMed ID: 22820756 doi:10.1123/jpah.10.2.185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Reed J, Hughey S. Providing daily physical education to improve the health and fitness levels of African American youth. Int J Sch Educ Psychol. 2015;2(3):1–5. doi:10.4172/2469-9837.1000136

    • Search Google Scholar
    • Export Citation
  • 42.

    Legacy Early College. Home—Legacy Early College, public charter school in Greenville, South Carolina. Accessed April 28, 2021. https://www.legacyearlycollege.org/

    • Search Google Scholar
    • Export Citation
  • 43.

    U.S. Department of Education. Title I—Improving The Academic Achievement Of The Disadvantaged. 2005. Accessed July 1, 2020. https://www2.ed.gov/policy/elsec/leg/esea02/pg1.html

    • Search Google Scholar
    • Export Citation
  • 44.

    The Cooper Institute. Fitnessgram and Activitygram Test Administration Manual-Updated. 4th ed. Champaign, IL: Human Kinetics; 2010.

  • 45.

    Tomkinson GR, Lang JJ, Blanchard J, Léger LA, Tremblay MS. The 20-m shuttle run: assessment and interpretation of data in relation to youth aerobic fitness and health. Pediatr Exerc Sci. 2019;31(2):152163. PubMed ID: 30885058 doi:10.1123/pes.2018-0179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Plowman SA, Meredith MD. Fitnessgram/Activitygram Reference Guide. 4th ed. Dallas, TX: The Cooper Institute; 2013.

  • 47.

    Lohman TG, Ring K, Pfeiffer K, et al. Relationships among fitness, body composition, and physical activity. Med Sci Sports Exerc. 2008;40(6):11631170. PubMed ID: 18460987 doi:10.1249/MSS.0b013e318165c86b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Must A, Anderson SE. Body mass index in children and adolescents: considerations for population-based applications. Int J Obes. 2006;30(4):590594. doi:10.1038/sj.ijo.0803300

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Diez R. A glossary for multilevel analysis. J Epidemiol Community Health. 2002;56(8):588. doi:10.1136/jech.56.8.588

  • 50.

    Bell BA, Ene M, Smiley W, Schoeneberger JA. A multilevel model primer using SAS PROC MIXED. In: SAS Global Forum. Vol 433; 2013:119.

    • Search Google Scholar
    • Export Citation
  • 51.

    Bell BA, Smiley W, Ene M, Blue GL. An intermediate primer to estimating linear multilevel models using SAS® PROC MIXED. In: SAS Global Forum Proceedings; 2014:1–19. Washington.

    • Search Google Scholar
    • Export Citation
  • 52.

    Nader PR, Bradley RH, Houts RM, McRitchie SL, O’Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA. 2008;300(3):295305. PubMed ID: 18632544 doi:10.1001/jama.300.3.295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Nader PR. Frequency and intensity of activity of third-grade children in physical education. Arch Pediatr Adolesc Med. 2003;157(2):185190. PubMed ID: 12580690 doi:10.1001/archpedi.157.2.185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Sallis JF, Glanz K. The role of built environments in physical activity, eating, and obesity in childhood. Future Child. 2006;16(1):89108. PubMed ID: 16532660 doi:10.1353/foc.2006.0009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Kahn JA, Huang B, Gillman MW, et al. Patterns and determinants of physical activity in U.S. adolescents. J Adolesc Health. 2008;42(4):369377. PubMed ID: 18346662 doi:10.1016/j.jadohealth.2007.11.143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Hughey SM, Kaczynski AT, Child S, Moore JB, Porter D, Hibbert J. Green and lean: is neighborhood park and playground availability associated with youth obesity? Variations by gender, socioeconomic status, and race/ethnicity. Prev Med. 2017;95:S101S108. doi:10.1016/j.ypmed.2016.11.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    London RA, Gurantz O. Afterschool program participation, youth physical fitness, and overweight. Am J Prev Med. 2013;44(3, suppl 3):S200S207. doi:10.1016/j.amepre.2012.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Telford RM, Telford RD, Cochrane T, Cunningham RB, Olive LS, Davey R. The influence of sport club participation on physical activity, fitness and body fat during childhood and adolescence: the LOOK Longitudinal Study. J Sci Med Sport. 2016;19(5):400406. PubMed ID: 26111721 doi:10.1016/j.jsams.2015.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Edwardson CL, Gorely T. Parental influences on different types and intensities of physical activity in youth: a systematic review. Psychol Sport Exerc. 2010;11(6):522535. doi:10.1016/j.psychsport.2010.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Beets MW, Cardinal BJ, Alderman BL. Parental social support and the physical activity-related behaviors of youth: a review. Health Educ Behav. 2010;37(5):621644. PubMed ID: 20729347 doi:10.1177/1090198110363884

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Clennin MN, Pate RR. The association between neighborhood socioeconomic deprivation, cardiorespiratory fitness, and physical activity in US youth. J Phys Act Health. 2019;16(12):11471153. PubMed ID: 31553943 doi:10.1123/jpah.2019-0039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Cleland V, Dwyer T, Venn A. Which domains of childhood physical activity predict physical activity in adulthood? A 20-year prospective tracking study. Br J Sports Med. 2012;46(8):595602. PubMed ID: 22144006 doi:10.1136/bjsports-2011-090508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Pate RR, Saunders R, Dishman RK, Addy C, Dowda M, Ward DS. Long-term effects of a physical activity intervention in high school girls. Am J Prev Med. 2007;33(4):276280. PubMed ID: 17888853 doi:10.1016/j.amepre.2007.06.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Robbins LB, Ling J, Sharma DB, et al. Intervention effects of “Girls on the Move” on increasing physical activity: a group randomized trial. Ann Behav Med. 2019;53(5):493500. PubMed ID: 29985968 doi:10.1093/abm/kay054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Biddle SJH, Braithwaite R, Pearson N. The effectiveness of interventions to increase physical activity among young girls: a meta-analysis. Prev Med. 2014;62:119131. PubMed ID: 24530611 doi:10.1016/j.ypmed.2014.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Thompson H, Johnson R, Madsen K, Fuller B. Impact of physical education litigation on fifth graders’ cardio-respiratory fitness, California, 2007–2018. Am J Public Health. 2019;109(11):15571563. PubMed ID: 31536398 doi:10.2105/AJPH.2019.305264

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Lahti A, Rosengren BE, Nilsson J-Å, Karlsson C, Karlsson MK. Long-term effects of daily physical education throughout compulsory school on duration of physical activity in young adulthood: an 11-year prospective controlled study. BMJ Open Sport Exerc Med. 2018;4(1):e000360. PubMed ID: 29682314 doi:10.1136/bmjsem-2018-000360

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Calahorro-Cañada F, Torres-Luque G, López-Fernández I, Carnero EA. Is physical education an effective way to increase physical activity in children with lower cardiorespiratory fitness? Scand J Med Sci Sports. 2017;27(11):14171422. PubMed ID: 27466085 doi:10.1111/sms.12740

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Diamant AL, Babey SH, Wolstein J. Adolescent Physical Education and Physical Activity in California. Los Angeles, CA: UCLA Center for Health Policy Research; 2011.

    • Search Google Scholar
    • Export Citation
  • 70.

    Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2013(2):CD007651.

    • Search Google Scholar
    • Export Citation
  • 71.

    Gordon-Larsen P, McMurray RG, Popkin BM. Determinants of adolescent physical activity and inactivity patterns. Pediatrics. 2000;105(6):e83e83. PubMed ID: 10835096 doi:10.1542/peds.105.6.e83

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Okely AD, Lubans DR, Morgan PJ, et al. Promoting physical activity among adolescent girls: the Girls in Sport group randomized trial. Int J Behav Nutr Phys Act. 2017;14(1):81. PubMed ID: 28637470 doi:10.1186/s12966-017-0535-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Ha AS, Lonsdale C, Lubans DR, Ng JY. Increasing students’ activity in physical education: results of the self-determined exercise and learning for FITness trial. Med Sci Sports Exerc. 2020;52(3):696704. PubMed ID: 31652232 doi:10.1249/MSS.0000000000002172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Zimmer R, Buddin R, Ausmus S, Smith DD. Nearly three decades into the charter school movement, what has research told us about charter schools. EdWorkingPaper No 19-156. 2019. Annenberg Institute at Brown University. Retrieved from http://www.edworkingpapers.com/ai19-156

    • Search Google Scholar
    • Export Citation
  • 75.

    Smith J, Wohlstetter P. Parent involvement in urban charter schools: a new paradigm or the status quo? Natl Cent Sch Choice Vanderbilt Univ NJ1. Published online 2009.

    • Search Google Scholar
    • Export Citation
  • 76.

    Bifulco R, Ladd HF. Institutional change and coproduction of public services: the effect of charter schools on parental involvement. J Public Adm Res Theory. 2006;16(4):553576. doi:10.1093/jopart/muj001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Stowe EW, Hughey SM, Hallum SH, Kaczynski AT. Associations between walkability and youth obesity: differences by urbanicity. Child Obes. 2019;15(8):555559. PubMed ID: 31448951 doi:10.1089/chi.2019.0063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Zewdie H, Zhao AY, Patel HH, et al. The association between neighborhood quality, youth physical fitness, and modifiable cardiovascular disease risk factors. Ann Epidemiol. 2021;57:3039. PubMed ID: 33596444 doi:10.1016/j.annepidem.2021.02.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    Hughey SM, Walsemann KM, Child S, Powers A, Reed JA, Kaczynski AT. Using an environmental justice approach to examine the relationships between park availability and quality indicators, neighborhood disadvantage, and racial/ethnic composition. Lands Urb Plan. 2016;148:159169. doi:10.1016/j.landurbplan.2015.12.016

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 41 41 40
Full Text Views 198 198 1
PDF Downloads 171 171 1