The FTO rs17817449 Polymorphism is Not Associated With Sedentary Time, Physical Activity, or Cardiorespiratory Fitness: Findings From the GENADIO Cross-Sectional Study

in Journal of Physical Activity and Health

Click name to view affiliation

Miquel Martorell
Search for other papers by Miquel Martorell in
Current site
Google Scholar
PubMed
Close
,
Lorena Mardones
Search for other papers by Lorena Mardones in
Current site
Google Scholar
PubMed
Close
,
Fanny Petermann-Rocha
Search for other papers by Fanny Petermann-Rocha in
Current site
Google Scholar
PubMed
Close
,
Maria Adela Martinez-Sanguinetti
Search for other papers by Maria Adela Martinez-Sanguinetti in
Current site
Google Scholar
PubMed
Close
,
Ana Maria Leiva-Ordoñez
Search for other papers by Ana Maria Leiva-Ordoñez in
Current site
Google Scholar
PubMed
Close
,
Claudia Troncoso-Pantoja
Search for other papers by Claudia Troncoso-Pantoja in
Current site
Google Scholar
PubMed
Close
,
Fernando Flores
Search for other papers by Fernando Flores in
Current site
Google Scholar
PubMed
Close
,
Igor Cigarroa
Search for other papers by Igor Cigarroa in
Current site
Google Scholar
PubMed
Close
,
Francisco Perez-Bravo
Search for other papers by Francisco Perez-Bravo in
Current site
Google Scholar
PubMed
Close
,
Natalia Ulloa
Search for other papers by Natalia Ulloa in
Current site
Google Scholar
PubMed
Close
,
Daniel Mondaca-Rojas
Search for other papers by Daniel Mondaca-Rojas in
Current site
Google Scholar
PubMed
Close
,
Ximena Diaz-Martinez
Search for other papers by Ximena Diaz-Martinez in
Current site
Google Scholar
PubMed
Close
,
Carlos Celis-Morales
Search for other papers by Carlos Celis-Morales in
Current site
Google Scholar
PubMed
Close
,
Marcelo Villagran
Search for other papers by Marcelo Villagran in
Current site
Google Scholar
PubMed
Close
, and
on behalf of the Epidemiology of Lifestyle and Health Outcomes in Chile Consortium
Search for other papers by on behalf of the Epidemiology of Lifestyle and Health Outcomes in Chile Consortium in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Genetic variants within the FTO gene have been associated with increased adiposity and metabolic markers; however, there is limited evidence regarding the association of FTO gene variants with physical activity-related variables. The authors aimed to investigate the association of the rs17817449 single-nucleotide polymorphism of FTO with physical activity, sedentary time, and cardiorespiratory fitness in Chilean adults. Methods: A total of 409 participants from the GENADIO study were included and genotyped for the rs17817449 single-nucleotide polymorphism of FTO in this cross-sectional study. Physical activity and sedentary time were measured with ActiGraph accelerometers. Cardiorespiratory fitness was assessed using the Chester step test. The associations were assessed by using multivariate regression analyses. Results: No associations were found for FTO variant with physical activity levels and cardiorespiratory fitness. The risk allele (G) of the FTO was found to be associated with sedentary time in the minimally adjusted model (β = 19.7 min/d; 95% confidence interval, 4.0 to 35.5, per each copy of the risk allele; P = .006), but the association was no longer significant when body mass index was included as a confounder (P = .211). Conclusion: The rs17817449 single-nucleotide polymorphism of the FTO gene was not associated with the level of physical activity, cardiorespiratory fitness, and sedentary behaviors in Chilean adults.

Martorell is with the Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile. Martorell and Ulloa are with the Centre for Healthy Living, University of Concepción, Concepción, Chile. Mardones, Flores, and Villagran are with the Biomedical Science Research Laboratory, School of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile. Petermann-Rocha and Celis-Morales are with the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom. Petermann-Rocha is also with the Institute of Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom; and the Faculty of Medicine, Universidad Diego Portales, Santiago, Chile. Martinez-Sanguinetti is with the Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile. Leiva-Ordoñez is with the Institute de Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile. Troncoso-Pantoja is with the CIEDE-UCSC, Department of Public Health, Universidad Católica de la Santísima Concepción, Concepción, Chile. Cigarroa is with the Escuela de Kinesiologia, Facultad de Salud, Universidad Santo Tomas, Chile. Ulloa is also with the Department of Clinical Biochemistry and Immunology, University of Concepcion, Concepcion, Chile. Mondaca-Rojas is with the Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile. Diaz-Martinez is with the Quality of Life Research Group, Department of Education Sciences, Universidad del Biobío, Chillán, Chile. Celis-Morales is also with the Centre for Research in Exercise Physiology (CIFE), Universidad Mayor, Santiago, Chile; and Human Performance Lab, Education, Physical Activity, and Health Research Unit, University Católica del Maule, Talca, Chile.

Villagran (marcelo.villagran@ucsc.cl) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Doaei S, Mosavi Jarrahi SA, Sanjari Moghadam A, et al. The effect of rs9930506 FTO gene polymorphism on obesity risk: a meta-analysis. Biomol Concepts. 2019;10(1):237242. PubMed ID: 31855561 doi:10.1515/bmc-2019-0025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hosseini-Esfahani F, Koochakpoor G, Mirmiran P, Daneshpour MS, Azizi F. Dietary patterns modify the association between fat mass and obesity-associated genetic variants and changes in obesity phenotypes. Br J Nutr. 2019;121(11):12471254. PubMed ID: 30929646 doi:10.1017/S0007114519000643

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Zhao X, Yang Y, Sun BF, Zhao YL, Yang YG. FTO and obesity: mechanisms of association. Curr Diab Rep. 2014;14(5):486. PubMed ID: 24627050

  • 4.

    Heni M, Kullmann S, Veit R, et al. Variation in the obesity risk gene FTO determines the postprandial cerebral processing of food stimuli in the prefrontal cortex. Mol Metab. 2014;3(2):109113. PubMed ID: 24634816 doi:10.1016/j.molmet.2013.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Qi Q, Kilpelainen TO, Downer MK, et al. FTO genetic variants, dietary intake and body mass index: insights from 177,330 individuals. Hum Mol Genet. 2014;23(25):69616972. PubMed ID: 25104851 doi:10.1093/hmg/ddu411

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Claussnitzer M, Hui CC, Kellis M. FTO Obesity variant and adipocyte browning in humans. N Engl J Med. 2016;374(2):192193. PubMed ID: 26760096 doi:10.1056/nejmc1513316

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    de Araujo TM, Velloso LA. Hypothalamic IRX3: a new player in the development of obesity. Trends Endocrinol Metab. 2020;31(5):368377. PubMed ID: 32035736 doi:10.1016/j.tem.2020.01.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gao X, Shin YH, Li M, Wang F, Tong Q, Zhang P. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One. 2010;5(11):e14005. PubMed ID: 21103374 doi:10.1371/journal.pone.0014005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wang X, Huang N, Yang M, et al. FTO is required for myogenesis by positively regulating mTOR-PGC-1alpha pathway-mediated mitochondria biogenesis. Cell Death Dis. 2017;8(3):e2702. PubMed ID: 28333151 doi:10.1038/cddis.2017.122

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Harbron J, van der Merwe L, Zaahl MG, Kotze MJ, Senekal M. Fat mass and obesity-associated (FTO) gene polymorphisms are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese Caucasian adults. Nutrients. 2014;6(8):31303152. PubMed ID: 25102252 doi:10.3390/nu6083130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359(24):25582566. PubMed ID: 19073975 doi:10.1056/NEJMoa0803839

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tanofsky-Kraff M, Han JC, Anandalingam K, et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am J Clin Nutr. 2009;90(6):14831488. PubMed ID: 19828706 doi:10.3945/ajcn.2009.28439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Celis-Morales C, Marsaux CF, Livingstone KM, et al. Physical activity attenuates the effect of the FTO genotype on obesity traits in European adults: the food4Me study. Obesity. 2016;24(4):962969. PubMed ID: 26921105 doi:10.1002/oby.21422

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hubacek JA, Pikhart H, Peasey A, Kubinova R, Bobak M. FTO variant, energy intake, physical activity and basal metabolic rate in Caucasians. the HAPIEE study. Physiol Res. 2011;60(1):175183. PubMed ID: 20945952

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kim JY, DeMenna JT, Puppala S, et al. Physical activity and FTO genotype by physical activity interactive influences on obesity. BMC Genet. 2016;17(1):47. doi:10.1186/s12863-016-0357-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Klimentidis YC, Raichlen DA, Bea J, et al. Genome-wide association study of habitual physical activity in over 377,000 UK Biobank participants identifies multiple variants including CADM2 and APOE. Int J Obes. 2018;42(6):11611176. doi:10.1038/s41366-018-0120-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Liaw YC, Liaw YP, Lan TH. Physical activity might reduce the adverse impacts of the FTO gene variant rs3751812 on the body mass index of adults in Taiwan. Genes. 2019;10(5):354. doi:10.3390/genes10050354

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Katus U, Villa I, Ringmets I, et al. Association of FTO rs1421085 with obesity, diet, physical activity, and socioeconomic status: a longitudinal birth cohort study. Nutr Metab Cardiovasc Dis. 2020;30(6):948959. PubMed ID: 32402589 doi:10.1016/j.numecd.2020.02.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    MINSAL. Encuesta Nacional de Salud 2016–2017, Chile. Ministry of Health, Chilean Government. https://www.minsal.cl/wp-content/uploads/2017/11/ENS-2016-17_PRIMEROS-RESULTADOS.pdf

    • Search Google Scholar
    • Export Citation
  • 20.

    Reuter CP, Rosane De Moura Valim A, Gaya AR, et al. FTO polymorphism, cardiorespiratory fitness, and obesity in Brazilian youth. Am J Hum Biol. 2016;28(3):381386. PubMed ID: 26458076 doi:10.1002/ajhb.22798

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Celis-Morales CA, Perez-Bravo F, Ibanes L, et al. Insulin resistance in Chileans of European and indigenous descent: evidence for an ethnicity x environment interaction. PLoS One. 2011;6(9):e24690. PubMed ID: 21931814 doi:10.1371/journal.pone.0024690

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Celis-Morales CA, Perez-Bravo F, Ibanez L, Salas C, Bailey ME, Gill JM. Objective vs. self-reported physical activity and sedentary time: effects of measurement method on relationships with risk biomarkers. PLoS One. 2012;7(5):e36345. PubMed ID: 22590532 doi:10.1371/journal.pone.0036345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cristi-Montero C, Ramirez-Campillo R, Alvarez C, et al. Inverse association of cardiorespiratory fitness with cardiovascular risk factors in Chilean adults. Rev Med Chil. 2016;144(8):980989. PubMed ID: 27905643 doi:10.4067/S0034-98872016000800004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Calahorro-Canada F, Torres-Luque G, Lopez-Fernandez I, Santos-Lozano A, Garatachea N, Alvarez-Carnero E. Physical activity and accelerometer; methodological training, recommendations and movement patterns in school. Nutr Hosp. 2014;31(1):115128. PubMed ID: 25561104 doi:10.3305/nh.2015.31.1.7450

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777781. PubMed ID: 9588623 doi:10.1097/00005768-199805000-00021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Cristi-Montero C, Rodríguez FR. The paradox of being physically active but sedentary or sedentary but physically active. Rev Med Chile. 2014;142(1):7278. PubMed ID: 24861117

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Buckley JP, Sim J, Eston RG, Hession R, Fox R. Reliability and validity of measures taken during the Chester step test to predict aerobic power and to prescribe aerobic exercise. Br J Sports Med. 2004;38(2):197205. PubMed ID: 15039259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    World Health Organization. Obesity and overweight: key facts. 2020. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight

    • Search Google Scholar
    • Export Citation
  • 29.

    González-Rojas AB-MS, Bascuñán-Muñoz C, Rojas-Rojas G, Márquez-Andrade JL, Pacheco-Valles A. Polimorfismo rs17817449 del Gen FTO y su influencia en variables antropométricas en Jóvenes Chilenos. Int J Morphol. 2018;36:12801284. doi:10.4067/S0717-95022018000401280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Zermeno-Rivera JJ, Astocondor-Perez JP, Valle Y, et al. Association of the FTO gene SNP rs17817449 with body fat distribution in Mexican women. Genet Mol Res. 2014;13(4):85618567. PubMed ID: 24615093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Villagran M, Petermann-Rocha F, Mardones L, et al. Association of the FTO (rs9939609) genotype with energy intake. Rev Med Chil. 2018;146(11):12521260. PubMed ID: 30725038

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schnurr TM, Viitasalo A, Eloranta AM, et al. Genetic predisposition to adiposity is associated with increased objectively assessed sedentary time in young children. Int J Obes. 2018;42:111114. doi:10.1038/ijo.2017.235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Carrasquilla GD, Garcia-Urena M, Fall T, Sorensen TIA, Kilpelainen TO. Mendelian randomization suggests a bidirectional, causal relationship 2 between physical inactivity and obesity. 2021 bioRxiv 2021.06.16.448665. doi:10.1101/2021.06.16.448665

    • Search Google Scholar
    • Export Citation
  • 34.

    Celis-Morales CA, Lyall DM, Steell L, et al. Associations of discretionary screen time with mortality, cardiovascular disease and cancer are attenuated by strength, fitness and physical activity: findings from the UK Biobank study. BMC Med. 2018;16(1):77. PubMed ID: 29792209 doi:10.1186/s12916-018-1063-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Celis-Morales CA, Lyall DM, Bailey MES, et al. The combination of physical activity and sedentary behaviors modifies the genetic predisposition to obesity. Obesity. 2019;27(4):653661. PubMed ID: 30900409 doi:10.1002/oby.22417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kilpelainen TO, Qi L, Brage S, et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011;8(11):e1001116. PubMed ID: 22069379 doi:10.1371/journal.pmed.1001116

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Tyrrell J, Wood AR, Ames RM, et al. Gene-obesogenic environment interactions in the UK Biobank study. Int J Epidemiol. 2017;46(2):559575. PubMed ID: 28073954 doi:10.1093/ije/dyw337

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Graff M, North KE, Richardson AS, et al. Screen time behaviours may interact with obesity genes, independent of physical activity, to influence adolescent BMI in an ethnically diverse cohort. Pediatr Obes. 2013;8(6):e74e79. PubMed ID: 24039247 doi:10.1111/j.2047-6310.2013.00195.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Klimentidis YC, Arora A, Chougule A, Zhou J, Raichlen DA. FTO association and interaction with time spent sitting. Int J Obes. 2016;40(3):411416. doi:10.1038/ijo.2015.190

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4306 3284 182
Full Text Views 29 16 0
PDF Downloads 40 19 0