The Impact of a 12-Month Activity Tracker Intervention on Activity Behavior Across Body Mass Index Subgroups Among Recent Retirees: Post Hoc Analysis of a Randomized Controlled Trial

in Journal of Physical Activity and Health
Restricted access

Background: This study examined the effectiveness of a 12-month activity tracker-based intervention on activity behavior among recent retirees (Enhancing physical ACTivity and healthy aging among recent REtirees [REACT]) in subgroups based on body mass index. Methods: REACT trial randomized 231 participants (mean age 65.2) into intervention and control groups. Main outcomes were accelerometer-measured moderate-to-vigorous (MVPA) and light physical activity (LPA) and sedentary time (SED) measured at baseline and 3-, 6-, and 12-month follow-ups. As a post hoc analysis, the intervention effect was examined among participants with normal weight (n = 77), overweight (n = 89), and obesity (n = 61). Results: An intervention effect was observed among participants with obesity in LPA (time × group P = .045) mirrored by a similar, albeit nonsignificant, effect in SED (P = .067), but not in MVPA (P = .92). A transient increase of 41 minutes per day (95% confidence interval, 14 to 68) in LPA was observed at 6 months among the intervention group, with a concomitant decrease of 42 minutes per day (−72 to −12) in SED. However, these changes were not maintained at 12 months. No between-group differences in changes over time were observed among participants with normal or overweight. Conclusions: Activity trackers may be particularly suitable for promoting changes in LPA and SED among older adults with obesity. However, their long-term effectiveness might be limited.

Tuominen, Suorsa, Pentti, Stenholm, and Leskinen are with the Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland; and the Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland. Pentti is with the Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. Koski is with the Department of Teacher Education, University of Turku, Rauma, Finland.

Tuominen (miika.tuominen@utu.fi) is corresponding author.

Supplementary Materials

    • Supplementary Table S1 (PDF 37 KB)
    • Supplementary Table S2 (PDF 103 KB)
    • Supplementary Table S3 (PDF 103 KB)
    • Supplementary Figure S1 (PDF 56 KB)
    • Supplementary Figure S2 (PDF 56 KB)
    • Supplementary Material S1 (PDF 370 KB)
    • Supplementary Material S2 (PDF 221 KB)
  • 1.

    Cunningham C, O’ Sullivan R, Caserotti P, Tully MA. Consequences of physical inactivity in older adults: a systematic review of reviews and meta-analyses. Scand J Med Sci Sports. 2020;30(5):816827. doi:10.1111/sms.13616

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Koster A, Patel KV, Visser M, et al. Joint effects of adiposity and physical activity on incident mobility limitation in older adults. J Am Geriatr Soc. 2008;56(4):636643. doi:10.1111/j.1532-5415.2007.01632.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Decaria JE, Sharp C, Petrella RJ. Scoping review report: obesity in older adults. Int J Obes. 2012;36(9):11411150. doi:10.1038/ijo.2012.29

  • 4.

    Loyen A, Clarke-Cornwell AM, Anderssen SA, et al. Sedentary time and physical activity surveillance through accelerometer pooling in four european countries. Sports Med. 2017;47(7):14211435. doi:10.1007/s40279-016-0658-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    McGarrigle L, Todd C. Promotion of physical activity in older people using mHealth and eHealth technologies: rapid review of reviews. J Med Internet Res. 2020;22(12):e22201. doi:10.2196/22201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lyons EJ, Lewis ZH, Mayrsohn BG, Rowland JL. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis. J Med Internet Res. 2014;16(8):e192. doi:10.2196/jmir.3469

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Mercer K, Giangregorio L, Schneider E, Chilana P, Li M, Grindrod K. Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: a mixed-methods evaluation. JMIR mHealth uHealth. 2016;4(1):e7. doi:10.2196/mhealth.4225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Oliveira JS, Sherrington C, Zheng ERY, Franco MR, Tiedemann A. Effect of interventions using physical activity trackers on physical activity in people aged 60 years and over: a systematic review and meta-analysis. Br J Sports Med. 2020;54(20):11881194. doi:10.1136/bjsports-2018-100324

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Muellmann S, Buck C, Voelcker-Rehage C, et al. Effects of two web-based interventions promoting physical activity among older adults compared to a delayed intervention control group in Northwestern Germany: results of the PROMOTE community-based intervention trial. Prev Med Rep. 2019;15:100958. doi:10.1016/j.pmedr.2019.100958

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Suboc TB, Strath SJ, Dharmashankar K, et al. Relative importance of step count, intensity, and duration on physical activity’s impact on vascular structure and function in previously sedentary older adults. J Am Heart Assoc. 2014;3(1):113. doi:10.1161/JAHA.113.000702

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Cadmus-Bertram LA, Marcus BH, Patterson RE, Parker BA, Morey BL. Randomized trial of a fitbit-based physical activity intervention for women. Am J Prev Med. 2015;49(3):414418. doi:10.1016/j.amepre.2015.01.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Leskinen T, Suorsa K, Tuominen M, et al. The effect of consumer-based activity tracker intervention on physical activity among recent retirees—an RCT study. Med Sci Sports Exerc. 2021;53(8):17561765. doi:10.1249/MSS.0000000000002627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Suorsa K, Leskinen T, Pulakka A, et al. The effect of a consumer-based activity tracker intervention on accelerometer-measured sedentary time among retirees: a randomized controlled REACT trial  [published online ahead of print April 11, 2021]. J Gerontol A Biol Sci Med Sci.  doi:10.1093/gerona/glab107

    • Search Google Scholar
    • Export Citation
  • 14.

    Liu JYW, Kor PPK, Chan CPY, Kwan RYC, Sze-Ki D. The effectiveness of a wearable activity tracker (WAT)-based intervention to improve physical activity levels in sedentary older adults: a systematic review and meta-analysis. Arch Gerontol Geriatr. 2020;91:104211. doi:10.1016/j.archger.2020.104211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    de Vries HJ, Kooiman TJM, van Ittersum MW, van Brussel M, de Groot M. Do activity monitors increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis. Obesity. 2016;24(10):20782091. doi:10.1002/oby.21619

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Yen HY, Chiu HL. The effectiveness of wearable technologies as physical activity interventions in weight control: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2019;20(10):14851493. doi:10.1111/obr.12909

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nicklas BJ, Gaukstern JE, Beavers KM, Newman JC, Leng X, Rejeski WJ. Self-monitoring of spontaneous physical activity and sedentary behavior to prevent weight regain in older adults. Obesity. 2014;22(6):14061412. doi:10.1002/oby.20732

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rosenberg DE, Anderson ML, Renz A, et al. Reducing sitting time in obese older adults: the I-STAND randomized controlled trial. J Aging Phys Act. 2020;28(6):864874. doi:10.1123/japa.2019-0470

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lyons EJ, Swartz MC, Lewis ZH, et al. Feasibility and acceptability of a wearable technology physical activity intervention with telephone counseling for mid-aged and older adults: a randomized controlled pilot trial. JMIR mHealth uHealth. 2017;5(3):e28. doi:10.2196/mhealth.6967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ekkekakis P, Vazou S, Bixby WR, Georgiadis E. The mysterious case of the public health guideline that is (almost) entirely ignored: call for a research agenda on the causes of the extreme avoidance of physical activity in obesity. Obes Rev. 2016;17(4);313329. doi:10.1111/obr.12369

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sparling PB, Howard BJ, Dunstan DW, Owen N. Recommendations for physical activity in older adults. BMJ. 2015;350:h100. doi:10.1136/bmj.h100

  • 22.

    Gropper H, John JM, Sudeck G, Thiel A. The impact of life events and transitions on physical activity: a scoping review. PLoS One. 2020;15(6):e0234794. doi:10.1371/journal.pone.0234794

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Geneva, Switzerland: WHO; 2000.

  • 24.

    LaMonte MJ, Lewis CE, Buchner DM, et al. Both light intensity and moderate-to-vigorous physical activity measured by accelerometry are favorably associated with cardiometabolic risk factors in older women: the objective physical activity and cardiovascular health (OPACH) study. J Am Heart Assoc. 2017;6(10):115. doi:10.1161/JAHA.117.007064

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Glass NL, Bellettiere J, Jain P, et al. Evaluation of light physical activity measured by accelerometry and mobility disability during a 6-year follow-up in older women. JAMA Netw Open. 2021;4(2):e210005. doi:10.1001/jamanetworkopen.2021.0005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Powell C, Herring MP, Dowd KP, et al. The cross-sectional associations between objectively measured sedentary time and cardiometabolic health markers in adults—a systematic review with meta-analysis component. Obes Rev. 2018;19(3):381395. doi:10.1111/obr.12642

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Loh R, Stamatakis E, Folkerts D, Allgrove J, Moir H. Effects of interrupting prolonged sitting with physical activity breaks on blood glucose, insulin and triacylglycerol measures: a systematic review and meta-analysis. Sports Med. 2020;50(2):295330. doi:10.1007/s40279-019-01183-w

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    del Pozo-Cruz J, García-Hermoso A, Alfonso-Rosa RM, et al. Replacing sedentary time: meta-analysis of objective-assessment studies. Am J Prev Med. 2018;55(3):395402. doi:10.1016/j.amepre.2018.04.042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hartman SJ, Nelson SH, Cadmus-Bertram LA, et al. Technology- and phone-based weight loss intervention: pilot RCT in women at elevated breast cancer risk. Am J Prev Med. 2016;51(5):714721. doi:10.1016/j.amepre.2016.06.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Attig C, Franke T. I track, therefore I walk—exploring the motivational costs of wearing activity trackers in actual users. Int J Hum Comput Stud. 2019;127:211224. doi:10.1016/j.ijhcs.2018.04.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Samdal GB, Eide GE, Barth T, Williams G, Meland E. Effective behaviour change techniques for physical activity and healthy eating in overweight and obese adults; systematic review and meta-regression analyses. Int J Behav Nutr Phys Act. 2017;14(1):42 doi:10.1186/s12966-017-0494-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2248 2248 383
Full Text Views 20 20 3
PDF Downloads 31 31 4