Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: To investigate the association between step counts and brain volumes (BVs)—global and 6 a priori selected cognition-related regions of interest—in Japanese men aged 40–79 years. Methods: The authors analyzed data from 680 cognitively intact participants of the Shiga Epidemiological Study of Subclinical Atherosclerosis—a population-based observational study. Using multivariable linear regression, the authors assessed cross-sectional associations between 7-day step counts at baseline (2006–2008) and BVs at follow-up (2012–2015) for age-stratified groups (<60 y and ≥60 y). Results: In the older adults ≥60 years, step counts at baseline (per 1000 steps) were associated with total BV at follow-up (β = 1.42, P = .022) while adjusted for potential covariates. Regions of interest-based analyses yielded an association of step counts with both prefrontal cortexes (P < .05) in older adults, while the left entorhinal cortex showed marginally significant association (P = .05). No association was observed with hippocampus, parahippocampal, cingulum, and cerebellum. No association was observed in younger adults (<60 y). Conclusions: The authors found a positive association between 7-day step counts and BVs, including prefrontal cortexes, and left entorhinal cortex in apparently healthy Japanese men.

Moniruzzaman, Kadota, Segawa, Ueshima, and Miura are with the Center for the Epidemiologic Research in Asia (CERA), Shiga University of Medical Science, Otsu, Shiga, Japan. Moniruzzaman, Kadota,  Ito, Kondo, Hisamatsu, Ueshima, and Miura are with the Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan. Shiino, Syaifullah, and Tooyama are with the Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan. Fujiyoshi is with the Department of Hygiene, School of Medicine, Wakayama Medical University, Wakayama, Japan. Miyagawa is with the International Center for Nutrition and Information, National Institute of Health and Nutrition, Shinjuku-ku, Tokyo, Japan. Hisamatsu is with the Department of Public Health, Okayama University, Okayama, Japan.

Kadota (ayakd@belle.shiga-med.ac.jp) is corresponding author.
  • 1.

    Bourisly AK, El-Beltagi A, Cherian J, Gejo G, Al-Jazzaf A, Ismail M. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21–45 years old. Neuroradiol J. 2015;28(5):450459. PubMed ID: 26306927 doi:10.1177/1971400915598078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Liu H, Yang Y, Xia Y, et al. Aging of cerebral white matter. Ageing Res Rev. 2017;34:6476. PubMed ID: 27865980 doi:10.1016/j.arr.2016.11.006

  • 3.

    Schippling S, Ostwaldt AC, Suppa P, et al. Global and regional annual brain volume loss rates in physiological aging. J Neurol. 2017;264(3):520528. PubMed ID: 28054131 doi:10.1007/s00415-016-8374-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Marstaller L, Williams M, Rich A, Savage G, Burianova H. Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience. 2015;290:369378. PubMed ID: 25644420 doi:10.1016/j.neuroscience.2015.01.049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wood KN, Nikolov R, Shoemaker JK. Impact of long-term endurance training vs guideline-based physical activity on brain structure in healthy aging. Front Aging Neurosci. 2016;8:155. PubMed ID: 27445798 doi:10.3389/fnagi.2016.00155

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Tamnes CK, Walhovd KB, Dale AM, et al. Brain development and aging: overlapping and unique patterns of change. NeuroImage. 2013;68:6374. PubMed ID: 23246860 doi:10.1016/j.neuroimage.2012.11.039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hafkemeijer A, Altmann-Schneider I, de Craen AJ, Slagboom PE, van der Grond J, Rombouts SA. Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults. Aging Cell. 2014;13(6):10681074. PubMed ID: 25257192 doi:10.1111/acel.12271

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gracien RM, Nurnberger L, Hok P, et al. Evaluation of brain ageing: a quantitative longitudinal MRI study over 7 years. Eur Radiol. 2017;27(4):15681576. PubMed ID: 27379992 doi:10.1007/s00330-016-4485-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187221. PubMed ID: 20879692 doi:10.1515/REVNEURO.2010.21.3.187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Raz N, Lindenberger U, Rodrigue KM, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex. 2005;15(11):16761689. doi:10.1093/cercor/bhi044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Groves AR, Smith SM, Fjell AM, et al. Benefits of multi-modal fusion analysis on a large-scale dataset: life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure. NeuroImage. 2012;63(1):365380. PubMed ID: 22750721 doi:10.1016/j.neuroimage.2012.06.038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lovden M, Backman L, Lindenberger U, Schaefer S, Schmiedek F. A theoretical framework for the study of adult cognitive plasticity. Psychol Bull. 2010;136(4):659676. PubMed ID: 20565172

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature. 2010;464(7288):529535. PubMed ID: 20336135 doi:10.1038/nature08983

  • 14.

    Galvan V, Jin K. Neurogenesis in the aging brain. Clin Interv Aging. 2007;2(4):605610. PubMed ID: 18225461

  • 15.

    Erickson KI, Raji CA, Lopez OL, et al. Physical activity predicts gray matter volume in late adulthood: the cardiovascular health study. Neurology. 2010;75(16):14151422. PubMed ID: 20944075 doi:10.1212/WNL.0b013e3181f88359

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bherer L, Erickson KI, Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J Aging Res. 2013;2013:657508. PubMed ID: 24102028

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Voelcker-Rehage C, Niemann C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev. 2013;37(9 Pt B):22682295. PubMed ID: 23399048 doi:10.1016/j.neubiorev.2013.01.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bamidis PD, Vivas AB, Styliadis C, et al. A review of physical and cognitive interventions in aging. Neurosci Biobehav Rev. 2014;44:206220. PubMed ID: 24705268 doi:10.1016/j.neubiorev.2014.03.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Batouli SAH, Saba V. At least eighty percent of brain grey matter is modifiable by physical activity: a review study. Behav Brain Res. 2017;332:204217. PubMed ID: 28600001 doi:10.1016/j.bbr.2017.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kadota A, Miura K, Okamura T, et al. Carotid intima-media thickness and plaque in apparently healthy Japanese individuals with an estimated 10-year absolute risk of CAD death according to the Japan Atherosclerosis Society (JAS) guidelines 2012: the Shiga Epidemiological Study of Subclinical Atherosclerosis (SESSA). J Atheroscler Thromb. 2013;20(10):755766. PubMed ID: 23831585 doi:10.5551/jat.17244

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ueshima H, Kadowaki T, Hisamatsu T, et al. Lipoprotein-associated phospholipase A2 is related to risk of subclinical atherosclerosis but is not supported by Mendelian randomization analysis in a general Japanese population. Atherosclerosis. 2016;246:141147. PubMed ID: 26775119 doi:10.1016/j.atherosclerosis.2015.12.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Galanis DJ, Joseph C, Masaki KH, Petrovitch H, Ross GW, White L. A longitudinal study of drinking and cognitive performance in elderly Japanese American men: the Honolulu-Asia Aging Study. Am J Public Health. 2000;90(8):12541259. PubMed ID: 10937006 doi:10.2105/AJPH.90.8.1254.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ashburner J, Friston KJ. Voxel-based morphometry--the methods. NeuroImage. 2000;11(6 Pt 1):805821. PubMed ID: 10860804 doi:10.1006/nimg.2000.0582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Whitwell JL. Voxel-based morphometry: an automated technique for assessing structural changes in the Brain. J Neurosci. 2009;29(31):96619664. PubMed ID: 19657018 doi:10.1523/JNEUROSCI.2160-09.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kashiwagi A, Kasuga M, Araki E, et al. International clinical harmonization of glycated hemoglobin in Japan: from Japan Diabetes Society to National Glycohemoglobin Standardization Program values. Diabetol Int. 2012;3(1):810. doi:10.1007/s13340-012-0069-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Nakamura M, Sato S, Shimamoto T. Improvement in Japanese clinical laboratory measurements of total cholesterol and HDL-cholesterol by the US cholesterol reference method laboratory network. J Atheroscler Thromb. 2003;10(3):145153. PubMed ID: 14564083 doi:10.5551/jat.10.145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Rovio S, Spulber G, Nieminen LJ, et al. The effect of midlife physical activity on structural brain changes in the elderly. Neurobiol Aging. 2010;31(11):19271936. PubMed ID: 19062136 doi:10.1016/j.neurobiolaging.2008.10.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Macpherson H, Teo WP, Schneider LA, Smith AE. A life-long approach to physical activity for brain health. Front Aging Neurosci. 2017;9:147. PubMed ID: 28588474 doi:10.3389/fnagi.2017.00147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Gallaway PJ, Miyake H, Buchowski MS, et al. Physical activity: a viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease, and vascular dementia in older adults. Brain Sci. 2017;7(12):22. doi:10.3390/brainsci7020022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Tan ZS, Spartano NL, Beiser AS, et al. Physical activity, brain volume, and dementia risk: the Framingham Study. J Gerontol A Biol Sci. 2017;72(6):789795.

    • Search Google Scholar
    • Export Citation
  • 31.

    Jochem C, Baumeister SE, Wittfeld K, et al. Domains of physical activity and brain volumes: a population-based study. NeuroImage. 2017;156:101108. PubMed ID: 28502846 doi:10.1016/j.neuroimage.2017.05.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Benedict C, Brooks SJ, Kullberg J, et al. Association between physical activity and brain health in older adults. Neurobiol Aging. 2013;34(1):8390. PubMed ID: 22592017 doi:10.1016/j.neurobiolaging.2012.04.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Braskie MN, Boyle CP, Rajagopalan P, et al. Physical activity, inflammation, and volume of the aging brain. Neuroscience. 2014;273:199209. PubMed ID: 24836855 doi:10.1016/j.neuroscience.2014.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Gow AJ, Bastin ME, Muñoz Maniega S, et al. Neuroprotective lifestyles and the aging brain. Activity, atrophy, and white matter integrity. Neurology. 2012;79(17):18021808. PubMed ID: 23091073 doi:10.1212/WNL.0b013e3182703fd2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Braak H, Braak E. The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res. 1992;15(1):631. doi:10.1016/0168-0102(92)90014-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hyman B, Van Hoesen G, Damasio A, Barnes C. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225(4667):11681170. PubMed ID: 6474172 doi:10.1126/science.6474172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Arenaza-Urquijo EM, de Flores R, Gonneaud J, et al. Distinct effects of late adulthood cognitive and physical activities on gray matter volume. Brain Imag Behav. 2017;11(2):346356. doi:10.1007/s11682-016-9617-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Siddarth P, Burggren AC, Eyre HA, Small GW, Merrill DA. Sedentary behavior associated with reduced medial temporal lobe thickness in middle-aged and older adults. PLoS One. 2018;13(4):e0195549. PubMed ID: 29649304 doi:10.1371/journal.pone.0195549

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Shimada H, Ishii K, Makizako H, Ishiwata K, Oda K, Suzukawa M. Effects of exercise on brain activity during walking in older adults: a randomized controlled trial. J Neuroengin Rehabil. 2017;14(1):50. doi:10.1186/s12984-017-0263-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Shibukawa T, Fujiyoshi A, Miura K, et al. Abstract P015: objectively measured step counts was independently associated with higher cognition in apparently healthy Japanese men. Circulation. 2018;137(suppl 1):AP015AP015.

    • Search Google Scholar
    • Export Citation
  • 41.

    Juottonen K, Laakso MP, Partanen K, Soininen H. Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. Am J Neuroradiol. 1999;20(1):139144. PubMed ID: 9974069

    • Search Google Scholar
    • Export Citation
  • 42.

    Colcombe SJ, Erickson KI, Scalf PE, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci. 2006;61(11):11661170. doi:10.1093/gerona/61.11.1166

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Nat Acad Sci USA. 2011;108(7):30173022. PubMed ID: 21282661 doi:10.1073/pnas.1015950108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Ruscheweyh R, Willemer C, Kruger K, et al. Physical activity and memory functions: an interventional study. Neurobiol Aging. 2011;32(7):13041319. PubMed ID: 19716631 doi:10.1016/j.neurobiolaging.2009.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Mortimer JA, Ding D, Borenstein AR, et al. Changes in brain volume and cognition in a randomized trial of exercise and social interaction in a community-based sample of non-demented Chinese elders. J Alzheimer’s Dis. 2012;30(4):757766. doi:10.3233/JAD-2012-120079

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Voss MW, Heo S, Prakash RS, et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum Brain Map. 2013;34(11):29722985. doi:10.1002/hbm.22119

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Niemann C, Godde B, Staudinger UM, Voelcker-Rehage C. Exercise-induced changes in basal ganglia volume and cognition in older adults. Neuroscience. 2014;281:147163. PubMed ID: 25255932 doi:10.1016/j.neuroscience.2014.09.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Yuki A, Lee S, Kim H, Kozakai R, Ando F, Shimokata H. Relationship between physical activity and brain atrophy progression. Med Sci Sports Exerc. 2012;44(12):23622368. PubMed ID: 22776876 doi:10.1249/MSS.0b013e3182667d1d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Mora F. Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialog Clin Neurosci. 2013;15(1):4552.

  • 50.

    Engeroff T, Vogt L, Fleckenstein J, et al. Lifespan leisure physical activity profile, brain plasticity and cognitive function in old age. Aging Mental Health. 2019;23(7):811818. PubMed ID: 29293024 doi:10.1080/13607863.2017.1421615

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 161
PDF Downloads 54 54 54