Small-Groups Versus Full-Class Exergaming on Urban Minority Adolescents’ Physical Activity, Enjoyment, and Self-Efficacy

Click name to view affiliation

Daniel J. McDonough
Search for other papers by Daniel J. McDonough in
Current site
Google Scholar
PubMed
Close
,
Wenxi Liu
Search for other papers by Wenxi Liu in
Current site
Google Scholar
PubMed
Close
,
Xiwen Su
Search for other papers by Xiwen Su in
Current site
Google Scholar
PubMed
Close
, and
Zan Gao
Search for other papers by Zan Gao in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: The effects of school-based exergaming interventions on adolescents’ physical activity (PA) and psychosocial outcomes have been mixed. Researchers speculate this may be attributed to design issues. Therefore, this study examined differences in urban minority adolescents’ PA, enjoyment, and self-efficacy during small-groups and full-class exergaming. Methods: Forty-seven urban minority adolescents (83% black; X¯age=11.8+1.3y) completed two 15-minute exergaming sessions on the Xbox One Kinect Just Dance: (1) small groups (n = 3–4) and (2) full class (n = 23–24). Participants’ time in sedentary behavior, light PA, and moderate to vigorous PA and steps were retrieved from ActiGraph GT3X+ accelerometers with enjoyment and self-efficacy assessed using validated surveys. Results: Participants spent significantly more time in sedentary behavior (5.9 [5.2] min vs 3.5 [2.7] min, respectively: P < .001, d = 0.57) and less time in moderate-to-vigorous PA (2.1 [2.8] min vs 5.5 [2.2] min, respectively: P < .001, d = 0.85) during the full-class versus the small-groups session. Moreover, small-groups exergaming resulted in significantly higher steps than the full-class exergaming (504.2 [132.1] vs 387.8 [122.1], respectively: P = .01, d = 0.50) and significantly greater enjoyment (3.5 [1.1] vs 3.2 [1.0], respectively: P = .02, d = 0.37). There were no significant differences between sessions for time in light PA and self-efficacy. Conclusions: Small-groups exergaming appears ideal for promoting enjoyable PA at higher intensities and lower sedentary time in underserved minority adolescents.

The authors are with the Department of Kinesiology, University of Minnesota–Twin Cities, Minneapolis, MN, USA.

Gao (gaoz@umn.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Knell G, Durand CP, Kohl HW, Wu IHC, Pettee-Gabriel K. Prevalence and likelihood of meeting sleep, physical activity, and screen-time guidelines among US youth. JAMA Pediatr. 2019;173(4):387389. doi:10.1001/jamapediatrics.2018.4847

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Biddle SJ, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45(11):886895. doi:10.1136/bjsports-2011-090185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cristi-Montero C, Chillón P, Labayen I, et al. Cardiometabolic risk through an integrative classification combining physical activity and sedentary behavior in European adolescents: HELENA study. J Sport Health Sci. 2019;8(1):5562. doi:10.1016/j.jshs.2018.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    USDHHS. Physical Activity Guidelines for Americans. 2nd ed. Washington, DC: US Dept of Health and Human Services; 2018.

  • 5.

    Fakhouri T, Hughes J, Song M, Fulton J, Ogden C. Physical activity in U.S. youth aged 12–15 years. NCHS Data Brief. 2014;141:18.

  • 6.

    Song M, Carroll DD, Fulton JE. Meeting the 2008 physical activity guidelines for Americans among U.S. youth. Am J Prev Med. 2013;44(3):216222. doi:10.1016/j.amepre.2012.11.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Whitt-Glover MC, Taylor WC, Floyd MF, Yore MM, Yancey AK, Matthews CE. Disparities in physical activity and sedentary behaviors among US children and adolescents: prevalence, correlates, and intervention implications. J Public Health Policy. 2009;30(suppl 1):S309S334. doi:10.1057/jphp.2008.46

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gao Z. Growth trajectories of young children’s objectively-determined physical activity, sedentary behavior, and body mass index. Child Obes. 2018;14(4):259264. doi:10.1089/chi.2018.0042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA. 2010;303(3):242249. doi:10.1001/jama.2009.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Flores G, Fuentes-Afflick E, Barbot O, et al. The health of Latino children: urgent priorities, unanswered questions, and a research agenda. JAMA. 2002;288(1):8290. doi:10.1001/jama.288.1.82

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Sallis JF, Prochaska JJ, Taylor WC. A review of correlates of physical activity of children and adolescents. Med Sci Sports Exerc. 2000;32(5):963975. doi:10.1097/00005768-200005000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Duke J, Huhman M, Heitzler C. Physical activity levels among children aged 9–13 years in the United States. Morb Mortal Wkly Rep. 2003;290:13081309.

    • Search Google Scholar
    • Export Citation
  • 13.

    Telama R, Yang X, Viikari J, Välimäki I, Wanne O, Raitakari O. Physical activity from childhood to adulthood: a 21-year tracking study. Am J Prev Med. 2005;28(3):267273. doi:10.1016/j.amepre.2004.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hills AP, Dengel DR, Lubans DR. Supporting public health priorities: recommendations for physical education and physical activity promotion in schools. Prog Cardiovasc Dis. 2015;57(4):368374. doi:10.1016/j.pcad.2014.09.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Faulkner GE, Buliung RN, Flora PK, Fusco C. Active school transport, physical activity levels and body weight of children and youth: a systematic review. Prev Med. 2009;48(1):38. doi:10.1016/j.ypmed.2008.10.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Long MW, Sobol AM, Cradock AL, Subramanian SV, Blendon RJ, Gortmaker SL. School-day and overall physical activity among youth. Am J Prev Med. 2013;45(2):150157. doi:10.1016/j.amepre.2013.03.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lonsdale C, Rosenkranz RR, Peralta L, Bennie A, Fahey P, Lubans DR. A systematic review and meta-analysis of interventions designed to increase moderate-to-vigorous physical activity in school physical education lessons. Am J Prev Med. 2013;56(2):152161. doi:10.1016/j.ypmed.2012.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    USDHHS. Promoting Better Health for Young People Through Physical Activity and Sports: A Report to the President From the Secretary of Health and Human Services and the Secretary of Education. Washington, DC: USDHHS/US Department of Education; 2000.

    • Search Google Scholar
    • Export Citation
  • 19.

    Chen A, Hancock GR. Conceptualizing a theoretical model for school-centered adolescent physical activity intervention research. Quest. 1996;58(3):355376. doi:10.1080/00336297.2006.10491887

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    McKenzie TL, Lounsbery M. School physical education: the pill not taken. Am J Lifestyle Med. 2009;3(3):219225. doi:10.1177/1559827609331562

  • 21.

    Gill M, Chan-Golston AM, Rice LN, Cole BL, Koniak-Griffin D, Prelip ML. Consistency of moderate to vigorous physical activity in middle school physical education. Fam Community Health. 2016;39(4):283292. doi:10.1097/FCH.0000000000000115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    AAHPERD. Moving into the Future: National Standards for Physical Education. Reston, VA: American Alliance for Health, Physical Education, Recreation and Dance; 2004.

    • Search Google Scholar
    • Export Citation
  • 23.

    Gao Z, Xiang P. Effects of exergaming-based exercise on urban children’s physical activity participation and body composition. J Phys Act and Health. 2014;11(5):992998. doi:10.1123/jpah.2012-0228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Gao Z, Zeng N, Pope ZC, Wang R, Yu F. Effects of exergaming on motor skill competence, perceived competence, and physical activity in preschool children. J Sport Health Sci. 2019;8(2):106113. doi:10.1016/j.jshs.2018.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gao Z, Zhang T, Stodden D. Children’s physical activity levels and their psychological correlated in interactive dance versus aerobic dance. J Sport Health Sci. 2013;2(3):146151. doi:10.1016/j.jshs.2013.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Staiano AE, Abraham AA, Calvert SL. Adolescent exergame play for weight loss and psychosocial improvement: a controlled physical activity intervention. Obesity. 2013;21(3):598601. doi:10.1002/oby.20282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gao Z, Podlog L, Huang C. Associations among children’s situational motivation, physical activity participation, and enjoyment in an interactive dance game. J Sport Health Sci. 2013;2(2):122128. doi:10.1016/j.jshs.2012.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gao Z, Huang C, Liu T, Xiong W. Impact of interactive dance games on urban children’s physical activity correlates and behavior. J Exerc Sci Fit. 2012;10(2):107112. doi:10.1016/j.jesf.2012.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Maddison R, Mhurchu CN, Jull A, Jiang Y, Prapavessis H, Rodgers A. Energy expended playing video console games: an opportunity to increase children’s physical activity? Pediatr Exerc Sci. 2007;19(3):334343. doi:10.1123/pes.19.3.334

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Graf DL, Pratt LV, Hester CN, Short KR. Playing active video games increases energy expenditure in children. Pediatrics. 2009;124(2):534540. doi:10.1542/peds.2008-2851

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Gao Z, Chen S. Are field-based exergames useful in preventing childhood obesity? A systematic review. Obes Rev. 2014;15(8):676691. doi:10.1111/obr.12164

  • 32.

    Peng W, Crouse JC, Lin JH. Using active video games for physical activity promotion: a systematic review of the current state of research. Health Educ Behav. 2013;40(2):171192. doi:10.1177/1090198112444956

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Pasco D, Roure C, Kermarrec G, Pope Z, Gao Z. The effects of a bike active video game on players’ physical activity and motivation. J Sport Health Sci. 2017;6(1):2532. doi:10.1016/j.jshs.2016.11.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Roure C, Pasco D, Benoît N, Deldicque L. Impact of a design-based bike exergame on young adults’ physical activity metrics and situational interest. Res Q Exerc Sport. 2020;91(2):309315. doi:10.1080/02701367.2019.1665621

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Sun H. Exergaming impact on physical activity and interest in elementary school children. Res Q Exerc Sport. 2012;83(2):212220. doi:10.1080/02701367.2012.10599852

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Peng W, Crouse J. Playing in parallel: the effects of multiplayer modes in active video game on motivation and physical exertion. Cyberpsychol Behav Soc Netw. 2013;16(6):423427. doi:10.1089/cyber.2012.0384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Williams A, Kabisch E. From interaction to participation: embodying space through embodied interaction. In: International Conference on Ubiquitous Computing, Tokyo, Japan, 2005:287304.

    • Search Google Scholar
    • Export Citation
  • 38.

    World Medical Association Inc. Declaration of Helsinki. Ethical principles for medical research involving human subjects. J Indian Med Assoc. 2009;107(6):403405.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Taylor SL, Curry WB, Knowles ZR, Noonan RJ, McGrane B, Fairclough SJ. Predictors of segmented school day physical activity and sedentary time in children from a northwest England low-income community. Int J Environ Res Public Health. 2017;14(5):534. doi:10.3390/ijerph14050534

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Zeng N, Gao X, Liu Y, Lee JE, Gao Z. Reliability of using motion sensors to measure children’s physical activity levels in exergaming. J Clin Med. 2018;7(5):100. doi:10.3390/jcm7050100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437450. doi:10.1123/jpah.10.3.437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):15571565. doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hagberg L, Lindahl B, Nyberg L, et al. Importance of enjoyment when promoting physical exercise. Scand J Med Sci Sports. 2009;19(5):740747. doi:10.1111/j.1600-0838.2008.00844.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Gao Z, Lodewyk K, Zhang T. The role of ability beliefs and incentives in middle school students’ intention, cardiovascular fitness, and effort. J Teach Phys Educ. 2009;28(1):320. doi:10.1123/jtpe.28.1.3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    McDonough DJ, Pope ZC, Zeng N, Lee JE, Gao Z. Comparison of college students’ energy expenditure, physical activity, and enjoyment during exergaming and traditional exercise. J Clin Med. 2018;7(11):433. doi:10.3390/jcm7110433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Duberg A, Hagberg L, Sunvisson H, Möller M. Influencing self-rated health among adolescent girls with dance intervention: a randomized controlled trial. JAMA Pediatr. 2013;167(1):2731. doi:10.1001/jamapediatrics.2013.421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Quin E, Frazer L, Redding E. The health benefits of creative dance: improving children’s physical and psychological wellbeing. Educ Health. 2007;25(2):3133.

    • Search Google Scholar
    • Export Citation
  • 48.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge Academic; 1988.

  • 49.

    Lopez-Sanchez GF, Diaz-Suarez A, Radziminski L, Jastrzebski ZE. Effects of a 12-week-long program of vigorous-intensity physical activity on the body composition of 10-and 11-year-old children. J Hum Sport Exerc. 2017;12:236245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Skrede T, Stavnsbo M, Aadland E, et al. Moderate-to-vigorous physical activity, but not sedentary time, predicts changes in cardiometabolic risk factors in 10-y-old children: the Active Smarter Kids Study. Am J Clin Nutr. 2017;105(6):13911398.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Elmesmari R, Reilly JJ, Martin A, Paton JY. Accelerometer measured levels of moderate-to-vigorous intensity physical activity and sedentary time in children and adolescents with chronic disease: a systematic review and meta-analysis. PLoS One. 2017;12(6):e0179429. doi:10.1371/journal.pone.0179429

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Flynn RM, Staiano AE, Beyl R, Richert RA, Wartella E, Calvert SL. The influence of active gaming on cardiorespiratory fitness in Black and Hispanic youth. J School Health. 2018;88(10):768775. doi:10.1111/josh.12679

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Ye S, Pope ZC, Lee JE, Gao Z. Effects of school-based exergaming on urban children’s physical activity and cardiorespiratory fitness: a quasi-experimental study. Int J Environ Res Public Health. 2019;16(21):4080. doi:10.3390/ijerph16214080

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    McDonough DJ, Pope ZC, Zeng N, Lee JE, Gao Z. Retired elite athletes’ physical activity, physiological, and psychosocial outcomes during single- and double-player exergaming. J Strength Cond Res. 2019;33(12):32203225. doi:10.1519/JSC.0000000000003386

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Goldfield GS, Mallory R, Parker T, et al. Effects of open-loop feedback on physical activity and television viewing in overweight and obese children: a randomized, controlled trial. Pediatrics. 2006;118(1):e157e166. doi:10.1542/peds.2005-3052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Frederick-Recascino CM, Schuster-Smith H. Competition and intrinsic motivation in physical activity: a comparison of two groups. J Sport Behav. 2003;26(3):240254.

    • Search Google Scholar
    • Export Citation
  • 57.

    da Costa BGG, da Silva KS, da Silva JA, Minatto G, de Lima LRA, Petroski EL. Sociodemographic, biological, and psychosocial correlates of light- and moderate-to-vigorous-intensity physical activity during school time, recesses, and physical education classes. J Sport Health Sci. 2019;8(2):177182. doi:10.1016/j.jshs.2017.05.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Gao Z, Lee AM, Kosma M, Solmon MA. Understanding students’ motivation in middle school physical education: examining the mediating role of self-efficacy on physical activity. Int J Sport Psychol. 2010;41(3):199215.

    • Search Google Scholar
    • Export Citation
  • 59.

    McDonough D, Pope Z, Zeng N, Liu W,Gao Z. Comparison of college students’ blood pressure, perceived exertion, and psychosocial outcomes during virtual reality, exergaming, and traditional exercise: an exploratory study. Games Health J. 2020;9(4):290296. doi:10.1089/g4h.2019.0196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2914 395 18
Full Text Views 82 42 0
PDF Downloads 53 8 0