Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $117.00

1 year online subscription

USD  $156.00

Student 2 year online subscription

USD  $222.00

2 year online subscription

USD  $296.00

Background: Only 24% of US youth meet physical activity recommendations set by the Centers for Disease Control and Prevention. Research demonstrates that community-based programs provide underresourced minority youth with opportunities for routine physical activity, although limited work draws from accelerometry data. This study objectively assessed youth physical activity attributable to participation (vs nonparticipation) days in a park-based afterschool program in Miami-Dade County, Miami, FL. Methods: Participants’ (n = 66; 60% male; 57% white Hispanic, 25% non-Hispanic black, 14% Black Hispanic, mean age = 10.2 y) physical activity was assessed April to May 2019 over 10 days across 7 park sites using Fitbit (Charge 2) devices. Separate repeated-measures multilevel models were developed to assess the relationship between program daily attendance and total (1) moderate to vigorous physical activity minutes and (2) step counts per day. Results: Models adjusted for individual-level age, sex, race/ethnicity, poverty, and clustering by park showed significantly higher moderate to vigorous physical activity minutes (β = 25.33 more minutes per day; 95% confidence interval, 7.0 to 43.7, P < .01) and step counts (β = 4067.8 more steps per day; 95% confidence interval, 3171.8 to 4963.8, P < .001) on days when youth did versus did not attend the program. Conclusions: Study findings suggest that park-based programs may support underserved youth in achieving daily physical activity recommendations.

Booth, Hansen, Nardi, Hawver, and Patel are with Parks, Recreation and Open Spaces, Miami-Dade County, Miami, FL, USA. Messiah is with the School of Public Health, The University of Texas, Houston, TX, USA. Kling is with the Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA. Okeke is with the College of Public Health and Social Work, Florida International University, Miami, FL, USA. D’Agostino is with the Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA.

Booth (ja’mese.booth@miamidade.gov) is corresponding author.
  • 1.

    Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40. PubMed ID: 20459784 doi:10.1186/1479-5868-7-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Porter AK, Matthews KJ, Salvo D, Kohl HW III. Associations of physical activity, sedentary time, and screen time with cardiovascular fitness in United States adolescents: results From the NHANES national youth fitness survey. J Phys Act Health. 2017;14(7):506512. PubMed ID: 28290741 doi:10.1123/jpah.2016-0165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    U.S. Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans. 2008. https://health.gov/sites/default/files/2019-09/paguide.pdf. Accessed January 11, 2021.

    • Search Google Scholar
    • Export Citation
  • 4.

    Bucksch J, Schlicht W. Health-Enhancing physical activity and the prevention of chronic diseases—an epidemiological review. Soz Praventivmed. 2006;51(5):281301. PubMed ID: 17176649 doi:10.1007/s00038-006-5043-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Aune D, Norat T, Letizmann M, et al. Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol. 2015;30(7):529542. PubMed ID: 26092138 doi:10.1007/s10654-015-0056-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Barcellos FC, Santos IS, Umpierre D, et al. Effects of exercise in the whole spectrum of chronic kidney disease: a systematic review. Clin Kidney J. 2015;8(6):753765. PubMed ID: 26613036 doi:10.1093/ckj/sfv099

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hurtig-Wennloef A, Ruiz JR, Harro M, Sjoestoerm M. Cardiorespiratory fitness relates more strongly than physical activity to cardiovascular disease risk factors in healthy children and adolescents: the European youth heart study. Eur J Cardiovasc Prev Rehabil. 2007;14(4):575581. PubMed ID: 17667650 doi:10.1097/HJR.0b013e32808c67e3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    McGavock JM, Torrane BD, McGuire KA, et al. Cardiorespiratory fitness and the risk of overweight in youth: the healthy hearts longitudinal study of cardiometabolic health. Obesity. 2009;17(9):18021807. PubMed ID: 19282826 doi:10.1038/oby.2009.59

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    National Physical Activity Plan Alliance. The 2018 United States Report Card on Physical Activity for Children and Youth. Washington, DC: National Physical Activity Plan Alliance; 2018. http://physicalactivityplan.org/projects/PA/2018/2018%20US%20Report%20Card%20Full%20Version_WEB.PDF?pdf=page-link. Accessed January 9, 2020.

    • Search Google Scholar
    • Export Citation
  • 10.

    Brinthaupt TM, Kang M, Anshel MH. A delivery model for overcoming psycho-behavioral barriers to exercise. Psychol Sport Exerc. 2010;11(4):259266. doi:10.1016/j.psychsport.2010.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kim J. Are physical education-related state policies and schools’ physical education requirement related to children’s physical activity and obesity? J Sch Health. 2012;82(6):268276. PubMed ID: 22568462 doi:10.1111/j.1746-1561.2012.00697.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sallis JF, McKenzie TL, Alcaraz JE, et al. The effects of a 2-year physical education program (SPARK) on physical activity and fitness in elementary school students. Am J Public Health. 1997;87(8):13281334. PubMed ID: 9279269 doi:10.2105/AJPH.87.8.1328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Vander Ploeg KA, Maximova K, McGavock J, et al. Do school-based physical activity interventions increase or reduce inequalities in health? Soc Sci Med. 2014;112:8087. PubMed ID: 24820223 doi:10.1016/j.socscimed.2014.04.032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Bailey R. Physical education and sport in schools: a review of benefits and outcomes. J Sch Health. 2006;76(8):397401. PubMed ID: 16978162 doi:10.1111/j.1746-1561.2006.00132.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Chomitz VR, Slining MM, McGowan RJ. Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. J Sch Health. 2009;79(1):3037. PubMed ID: 19149783 doi:10.1111/j.1746-1561.2008.00371.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Trudeau F, Shephard RJ. Physical education, school physical activity, school sports and academic performance. Int J Behav Nut Phys Act. 2008;5(1):10. PubMed ID: 18298849 doi:10.1186/1479-5868-5-10

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Institute of Medicine (IOM). Educating the Student Body: Taking Physical Activity and Physical Education to School. Washington, DC: The National Academies Press; 2013.

    • Search Google Scholar
    • Export Citation
  • 18.

    Renter DS, Scott C, Kober N, et al. From the Capital to the Classroom: Year 4 of No Child Left Behind. Washington, DC: Center for Education Policy; 2006.

    • Search Google Scholar
    • Export Citation
  • 19.

    Pate RR, Saunders RP, O’Neill JR, et al. Overcoming barriers to physical activity: helping youth be more active. ACSMs Health Fit J. 2011;15(1):712. doi:10.1249/FIT.0b013e318201c8ee

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Lee SM, Burgeson CR, Fulton JE, Spain CG. Physical education and physical activity: results from the school health policies and programs study 2006. J Sch Health. 2007;77(8):435463. PubMed ID: 17908102 doi:10.1111/j.1746-1561.2007.00229.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Abbott R, Jenkins D, Haswell-Elkins M, et al. Physical activity of young people in the Torres Strait and Northern Peninsula Region: an exploratory study. Aust J Rural Health. 2008;16(5):278282. PubMed ID: 18808485 doi:10.1111/j.1440-1584.2008.00979.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Allender S, Cowburn G, Foster C. Understanding participation in sport and physical activity among children and adults: a review of qualitative studies. Health Educ Res. 2006;21(6):826835. PubMed ID: 16857780 doi:10.1093/her/cyl063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dwyer JJ, Allison KR, Goldenberg ER, et al. Adolescent girls’ perceived barriers to participation in physical activity. Adolescence. 2006;41(161):7589. PubMed ID: 16689442

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gyurcsik NC, Spink KS, Bray SR, et al. An ecologically based examination of barriers to physical activity in students from grade seven through first-year university. J Adolesc Health. 2006;38(6):704711. PubMed ID: 16730599 doi:10.1016/j.jadohealth.2005.06.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Rees R, Kavanagh J, Harden A, et al. Young people and physical activity: a systematic review matching their views to effective interventions. Health Educ Res. 2006;21(6):806825. PubMed ID: 17041020 doi:10.1093/her/cyl120

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Centers for Disease Control and Prevention. Youth risk behavior surveillance—United States, 2010. Surveillance summaries. MMWR. 2010;59(SS-5). https://www.cdc.gov/mmwr/pdf/ss/ss5905.pdf. Accessed February 10, 2020.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    D’Agostino EM, Patel HH, Ahmed Z. Impact of change in neighborhood racial/ethnic segregation on cardiovascular health in minority youth attending a park-based afterschool program. Soc Sci Med. 2018;205:116129. PubMed ID: 29705630 doi:10.1016/j.socscimed.2018.03.038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    D’Agostino EM, Patel HH, Hansen E, et al. Longitudinal analysis of cardiovascular disease risk profile in neighbourhood poverty subgroups: 5-year results from an afterschool fitness programme in the USA. J Epidemiol Community Health. 2018;72(3):193201. PubMed ID: 29175865 doi:10.1136/jech-2017-209333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Diez Roux AV, Mujahid MS, Hirsch JA. The impact of neighborhoods on CV risk. Glob Heart. 2016;11(3):353363. PubMed ID: 27741982 doi:10.1016/j.gheart.2016.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307(5):483490. PubMed ID: 22253364 doi:10.1001/jama.2012.40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    The Annie E. Casey Foundation Kids Count Data Center. Children in poverty (100 percent poverty) in the United States. 2014. https://datacenter.kidscount.org/about. Accessed January 11, 2021.

    • Search Google Scholar
    • Export Citation
  • 32.

    Babey SH, Hastert TA, Yu H, Brown ER. Physical activity among adolescents—when do parks matter? Am J Prev Med. 2009;34(4):345348. PubMed ID: 18374249 doi:10.1016/j.amepre.2008.01.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ding D, Sallis JF, Kerr J. Neighborhood environment and physical activity among youth: a review. Am J Prev Med. 2011;41(4):442455. PubMed ID: 21961474 doi:10.1016/j.amepre.2011.06.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kneeshaw-Price SH, Saelens BE, Sallis JF, et al. Neighborhood crime-related safety and its relation to children’s physical activity. J Urban Health. 2015;92(3):472489. PubMed ID: 25801486 doi:10.1007/s11524-015-9949-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Lauver SC. Assessing the Benefits of an After -School Program for Urban Youth: An Impact and Process Evaluation. [Dissertations available from ProQuest AAI3043903]. 2002. https://repository.upenn.edu/dissertations/AAI3043903/. Accessed January 11, 2021.

    • Search Google Scholar
    • Export Citation
  • 36.

    Messiah SE, D’Agostino EM, Hansen E, et al. Longitudinal impact of a park-based afterschool healthy weight program on modifiable cardiovascular disease risk factors in youth. J Community Health. 2018;43(1):103116. PubMed ID: 28689339 doi:10.1007/s10900-017-0393-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Improving health by reconnecting youth with the outdoors. https://www.nrpa.org/uploadedFiles/nrpa.org/Advocacy/Children-in-Nature.pdf. Accessed January 11, 2021.

  • 38.

    Giles-Corti B, Broomhall MH, Knuiman M, et al. Increasing walking: how important is distance to, attractiveness, and size of public open space? Am J Prev Med. 2005;28(2)(suppl 2):169176. PubMed ID: 15694525 doi:10.1016/j.amepre.2004.10.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    U.S. Department of Health and Human Services. Healthy People 2020—Improving the Health of Americans. 2020. http://healthypeople.gov/2020/. Accessed January 11, 2021.

    • Search Google Scholar
    • Export Citation
  • 40.

    Papas MA, Alberg AJ, Ewing R, et al. The built environment and obesity. Epidemiol Rev. 2007;29(1):129143. PubMed ID: 17533172 doi:10.1093/epirev/mxm009

  • 41.

    Sallis JF, Floyd MF, Rodríguez DA, Saelens BE. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation. 2012;125(5):729737. PubMed ID: 22311885 doi:10.1161/CIRCULATIONAHA.110.969022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Promoting physical activity in local parks and recreation this July. 2017. https://health.gov/news-archive/blog/2017/07/promoting-physical-activity-in-local-parks-and-recreation-this-july/index.html.

    • Search Google Scholar
    • Export Citation
  • 43.

    The rationale for recreation services for youth: an evidenced based approach. https://www.nrpa.org/globalassets/research/witt-caldwell-full-research-paper.pdf.

    • Search Google Scholar
    • Export Citation
  • 44.

    Beets MW, Huberty J, Beighle A. Systematic observation of physical activity in afterschool programs: preliminary findings from Movin’ afterschool intervention. J Phys Act Health. 2013;10(7):974981. PubMed ID: 23132829 doi:10.1123/jpah.10.7.974

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Beets MW, Weaver RG, Turner-McGrievy G, et al. Physical activity outcomes in afterschool programs: a group randomized controlled trial. Prev Med. 2016;90:207215. PubMed ID: 27397608 doi:10.1016/j.ypmed.2016.07.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Carrel AL, Logue J, Deininger H, et al. An after-school exercise program improves fitness, and body composition in elementary school children. J Physic Educ Sport Manag. 2011;2(3):3236. PubMed ID: 25309803

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Herrick H, Thompson H, Kinder J, Madsen KA. Use of SPARK to promote after-school physical activity. J Sch Health. 2012;82(10):457461. PubMed ID: 22954164 doi:10.1111/j.1746-1561.2012.00722.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Gesell SB, Sommer EC, Lambert EW, et al. Comparative effectiveness of after-school programs to increase physical activity. J Obes. 2013;2013:576821. PubMed ID: 23984052 doi:10.1155/2013/576821

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Rajan S, Basch CE. Fidelity of after-school program implementation targeting adolescent youth: identifying successful curricular and programmatic characteristics. J Sch Health. 2012;82(4):159165. PubMed ID: 22385088 doi:10.1111/j.1746-1561.2011.00681.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Adams MA, Caparosa S, Thompson S, Norman GJ. Translating physical activity recommendations for overweight adolescents to steps per day. Am J Prev Med. 2009;37(2):137140. PubMed ID: 19524391 doi:10.1016/j.amepre.2009.03.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Ridgers ND, Timperio A, Brown H, et al. A cluster-randomised controlled trial to promote physical activity in adolescents: the raising awareness of physical activity (RAW-PA) study. BMC Public Health. 2017;17(1):6. PubMed ID: 28052773 doi:10.1186/s12889-016-3945-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Wilson M, Ramsay S, Young K. Engaging overweight adolescents in a health and fitness program using wearable activity trackers. J Pediatr Health Care. 2017;31(4):e25e34. PubMed ID: 28501356 doi:10.1016/j.pedhc.2017.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    D’Agostino EM, Patel HH, Hansen E, et al. Effect of participation in a park-based afterschool program on cardiovascular disease risk among severely obese youth. Public Health. 2018;159:137143. PubMed ID: 29599055 doi:10.1016/j.puhe.2018.02.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    United States Census Bureau: American Community Survey (ACS). 2016. https://www.census.gov/programs-surveys/acs/. Accessed April 20, 2019.

    • Search Google Scholar
    • Export Citation
  • 55.

    Messiah SE, D’Agostino EM, Patel HH, et al. Changes in cardiovascular health and physical fitness in ethnic youth with intellectual disabilities participating in a park-based afterschool programme for two years. J Appl Res Intellect Disabil. 2019;32(6):14781489. PubMed ID: 31219677 doi:10.1111/jar.12642

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Cerin E. Statistical approaches to testing the relationships of the built environment with resident-level physical activity behavior and health outcomes in cross-sectional studies with cluster sampling. J Plan Lit. 2010;26(2):151167. doi:10.1177/0885412210386229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Kincaid C, COMSYS Information Technology Services, Inc. Guidelines for selecting the covariance structure in mixed model analysis. Paper 198-30. Statistics and Data Analysis. SUGI 30. Cary, NC: SAS.

    • Search Google Scholar
    • Export Citation
  • 58.

    Littell RC, Pendergast J, Natarajan R. Modelling covariance structure in the analysis of repeated measures data. Stat Med. 2000;19(13):17931819. PubMed ID: 10861779 doi:10.1002/1097-0258(20000715)19:13%2C1793:AID-SIM482%2E3.0.CO;2-Q

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Law M, Wald N, Morris J. Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy. Health Technol Assess. 2003;7(31):194. PubMed ID: 14604498 doi:10.3310/hta7310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Global recommendations on physical activity for health. https://apps.who.int/iris/bitstream/handle/10665/44399/9789241599979_eng.pdf;jsessionid=A8EDB7DAC019604359C10F9571C3D5A7?sequence=1.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Physical activity guidelines for Americans. 2019. https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf.

  • 62.

    Thaw JM, Villa M, Reitman D, et al. Evidence-Based fitness promotion in an afterschool setting: Implementation fidelity and its policy implications. New Dir Youth Dev. 2014;2014(143):103131. PubMed ID: 25530243 doi:10.1002/yd.20106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Cliff DP, Reilly JJ, Okely AD. Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0–5 years. J Sci Med Sport. 2009;12(5):557567. PubMed ID: 19147404 doi:10.1016/j.jsams.2008.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Penpraze V, Reilly JJ, MacLean CM, et al. Monitoring of physical activity in young children: how much is enough? Pediatr Exerc Sci. 2006;18(4):483491. doi:10.1123/pes.18.4.483

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37(suppl):S531S543. doi:10.1249/01.mss.0000185657.86065.98

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Esliger DW, Copeland JL, Barnes JD, Tremblay MS. Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J Phys Act Health. 2005;2(3):366. doi:10.1123/jpah.2.3.366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;12:159. PubMed ID: 26684758 doi:10.1186/s12966-015-0314-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Hamari L, Kullberg T, Ruohonen J, et al. Physical activity among children: objective measurements using Fitbit One® and ActiGraph. BMC Res Notes. 2017;10(1):161. PubMed ID: 28427441 doi:10.1186/s13104-017-2476-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Tully MA, McBride C, Heron L, Hunter RF. The validation of Fibit Zip physical activity monitor as a measure of free-living physical activity. BMC Res Notes. 2014;7(1):952. PubMed ID: 25539733 doi:10.1186/1756-0500-7-952

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 374 374 146
Full Text Views 15 15 6
PDF Downloads 24 24 2