How Many Valid Days Are Necessary to Assess Physical Activity Data From Accelerometry During Pregnancy?

Click name to view affiliation

Danilo Fernandes da Silva
Search for other papers by Danilo Fernandes da Silva in
Current site
Google Scholar
PubMed
Close
,
Shuhiba Mohammad
Search for other papers by Shuhiba Mohammad in
Current site
Google Scholar
PubMed
Close
,
Taniya Singh Nagpal
Search for other papers by Taniya Singh Nagpal in
Current site
Google Scholar
PubMed
Close
,
Sara Carolina Scremin Souza
Search for other papers by Sara Carolina Scremin Souza in
Current site
Google Scholar
PubMed
Close
,
Rachel C. Colley
Search for other papers by Rachel C. Colley in
Current site
Google Scholar
PubMed
Close
, and
Kristi Bree Adamo
Search for other papers by Kristi Bree Adamo in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: The authors examined whether or not ≤3 days wearing Actical® accelerometers provided acceptable results in comparison with the recommendation of ≥4 days in women across gestation. Methods: A total of 26, 76, and 57 participants at early, mid, and late pregnancy, respectively, were assessed. Participants were instructed to wear the device for 7 days and women who wore it for ≥4 days were included. For each participant, 3, 2, and 1 day(s) were randomly selected. Paired comparisons, intraclass correlations coefficients, and kappa statistics were performed for ≥4 days (criterion) versus 3, 2, and 1 day(s). Averages (in minutes per day) of sedentary time, light, moderate, vigorous, moderate to vigorous physical activity (PA) and steps per day were examined. Results: When 3 valid days were compared with the criterion, no significant differences were found for any gestational period. The intraclass correlations coefficients were “high” for all PA-related variables. The k values varied from .819 to .838 across pregnancy (“strong”). Two and 1 valid day(s) versus the criterion showed significant differences in some PA intensities, reduced intraclass correlations coefficients, “moderate” k values for 2 valid days (.638–.788) and “minimal-to-moderate” k values for 1 valid day (.367–.755). Conclusion: In pregnant women during early, mid, and late pregnancy, PA data obtained from 3 valid days of wear was equivalent and agreed with ≥4 valid days.

da Silva, Mohammad, Nagpal, Souza, and Adamo are with the Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada. Colley is with the Health Analysis Division, Statistics Canada, Ottawa, ON, Canada.

Adamo (kadamo@uottawa.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Evenson KR, Mottola MF, Artal R. Review of recent physical activity guidelines during pregnancy to facilitate advice by health care providers. Obstet Gynecol Surv. 2019;74(8):481489. PubMed ID: 31418450 doi:10.1097/OGX.0000000000000693

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Mottola MF, Davenport MH, Ruchat SM, et al. 2019 Canadian guideline for physical activity throughout pregnancy. Br J Sports Med. 2018;52(21):13391346. PubMed ID: 30337460 doi:10.1136/bjsports-2018-100056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kominiarek MA, Peaceman AM. Gestational weight gain. Am J Obstet Gynecol. 2017;217(6):642651. PubMed ID: 28549978 doi:10.1016/j.ajog.2017.05.040

  • 4.

    Denize KM, Akbari P, da Silva DF, Haman F, Adamo KB. Greater energy demand of exercise during pregnancy does not impact mechanical efficiency. Appl Physiol Nutr Metab. 2020;45(5):493499. PubMed ID: 31614094 doi:10.1139/apnm-2019-0450

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brett KE, Wilson S, Ferraro ZM, Adamo KB. Self-report pregnancy physical activity questionnaire overestimates physical activity. Can J Public Health. 2015;106(5):e297e302. PubMed ID: 26451991 doi:10.17269/cjph.106.4938

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Colley RC, Butler G, Garriguet D, Prince SA, Roberts KC. Comparison of self-reported and accelerometer-measured physical activity in Canadian adults. Health Rep. 2018;29(12):315. PubMed ID: 30566204

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Tremblay MS, Warburton DE, Janssen I, et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metab. 2011;36(1):3646; 4758. PubMed ID: 21326376 doi:10.1139/H11-009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Glazer NL, Lyass A, Esliger DW, et al. Sustained and shorter bouts of physical activity are related to cardiovascular health. Med Sci Sports Exerc. 2013;45(1):109. PubMed ID: 22895372 doi:10.1249/MSS.0b013e31826beae5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Clarke J, Janssen I. Sporadic and bouted physical activity and the metabolic syndrome in adults. Med Sci Sports Exerc. 2014;46(1):7683. PubMed ID: 23846157 doi:10.1249/MSS.0b013e31829f83a0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5(1):56. PubMed ID: 18990237 doi:10.1186/1479-5868-5-56

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Guérin E, Ferraro ZM, Adamo KB, Prud’homme D. The need to objectively measure physical activity during pregnancy: considerations for clinical research and public health impact. Matern Child Health J. 2018;22(5):637641. PubMed ID: 29411253 doi:10.1007/s10995-018-2475-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Clarke J, Colley R, Janssen I, Tremblay MS. Accelerometer-measured moderate-to-vigorous physical activity of Canadian adults, 2007 to 2017. Health Rep. 2019;30(8):310. PubMed ID: 31454407 doi:10.25318/82-003-x201900800001-eng

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22(1):714. PubMed ID: 21510585

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Colley R, Gorber SC, Tremblay MS. Quality control and data reduction procedures for accelerometry-derived measures of physical activity. Health Rep. 2010;21(1):6369. PubMed ID: 20426228

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47(9):18211845. PubMed ID: 28303543 doi:10.1007/s40279-017-0716-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    da Silva SG, Evenson KR, da Silva I, et al. Correlates of accelerometer-assessed physical activity in pregnancy—the 2015 Pelotas (Brazil) Birth Cohort Study. Scand J Med Sci Sports. 2018;28(8):19341945. PubMed ID: 29542188 doi:10.1111/sms.13083

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    da Silva SG, Evenson KR, Ekelund U, et al. How many days are needed to estimate wrist-worn accelerometry-assessed physical activity during the second trimester in pregnancy? PLoS One. 2019;14(6):e0211442. PubMed ID: 31246953 doi:10.1371/journal.pone.0211442

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Ellis K, Kerr J, Godbole S, Lanckriet G, Wing D, Marshall S. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Physiol Meas. 2014;35(11):21912203. PubMed ID: 25340969 doi:10.1088/0967-3334/35/11/2191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Crouter SE, Flynn JI, Bassett DR Jr. Estimating physical activity in youth using a wrist accelerometer. Med Sci Sports Exerc. 2015;47(5):944951. PubMed ID: 25207928 doi:10.1249/MSS.0000000000000502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bujang M. Guidelines of the minimum sample size requirements for Cohen’s Kappa. Epidemiol Biostat Public Health. 2017;14:e1226712261.

    • Search Google Scholar
    • Export Citation
  • 22.

    Biro F, Wiley-Kroner B, Whitsett D. Perceived and measured weight changes during adolescent pregnancy. J Pediatr Adolesc Gynecol. 1999;12(1):3132. PubMed ID: 9929838 doi:10.1016/S1083-3188(00)86618-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    McClure CK, Bodnar LM, Ness R, Catov JM. Accuracy of maternal recall of gestational weight gain 4 to 12 years after delivery. Obesity. 2011;19(5):10471053. PubMed ID: 21164507 doi:10.1038/oby.2010.300

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Vincent WJ, Weir J. Statistics in Kinesiology. Champaign, IL: Human Kinetics; 2005.

  • 25.

    McHugh ML. Interrater reliability: the kappa statistic. Biochem Med. 2012;22(3):276282. PubMed ID: 23092060 doi:10.11613/BM.2012.031

  • 26.

    Toftager M, Kristensen PL, Oliver M, et al. Accelerometer data reduction in adolescents: effects on sample retention and bias. Int J Behav Nutr Phys Act. 2013;10(1):140. PubMed ID: 24359480 doi:10.1186/1479-5868-10-140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ricardo LIC, Wendt A, Galliano LM, et al. Number of days required to estimate physical activity constructs objectively measured in different age groups: findings from three Brazilian (Pelotas) population-based birth cohorts. PLoS One. 2020;15(1):e0216017. PubMed ID: 31923194 doi:10.1371/journal.pone.0216017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dillon CB, Fitzgerald AP, Kearney PM, et al. Number of days required to estimate habitual activity using wrist-worn GENEActiv accelerometer: a cross-sectional study. PLoS One. 2016;11(5):e0109913. PubMed ID: 27149674 doi:10.1371/journal.pone.0109913

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hesketh KR, Evenson KR, Stroo M, Clancy SM, Østbye T, Benjamin-Neelon SE. Physical activity and sedentary behavior during pregnancy and postpartum, measured using hip and wrist-worn accelerometers. Prev Med Rep. 2018;10:337345. PubMed ID: 29868389 doi:10.1016/j.pmedr.2018.04.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2163 501 17
Full Text Views 46 20 1
PDF Downloads 40 7 1